全文获取类型
收费全文 | 2822篇 |
免费 | 185篇 |
国内免费 | 46篇 |
专业分类
3053篇 |
出版年
2024年 | 11篇 |
2023年 | 149篇 |
2022年 | 109篇 |
2021年 | 148篇 |
2020年 | 211篇 |
2019年 | 343篇 |
2018年 | 234篇 |
2017年 | 252篇 |
2016年 | 210篇 |
2015年 | 85篇 |
2014年 | 149篇 |
2013年 | 357篇 |
2012年 | 59篇 |
2011年 | 102篇 |
2010年 | 49篇 |
2009年 | 78篇 |
2008年 | 100篇 |
2007年 | 71篇 |
2006年 | 63篇 |
2005年 | 55篇 |
2004年 | 49篇 |
2003年 | 38篇 |
2002年 | 29篇 |
2001年 | 19篇 |
2000年 | 12篇 |
1999年 | 8篇 |
1998年 | 17篇 |
1997年 | 10篇 |
1996年 | 8篇 |
1995年 | 7篇 |
1994年 | 8篇 |
1993年 | 6篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1987年 | 1篇 |
1950年 | 1篇 |
排序方式: 共有3053条查询结果,搜索用时 31 毫秒
21.
Mihajlo Gajić Budimir S. Ilić Bojan P. Bondžić Zdravko Džambaski Vesna V. Kojić Dimitar S. Jakimov Gordana Kocić Andrija Šmelcerović 《化学与生物多样性》2021,18(8):e2100261
Herein we report an assessment of 24 1,2,3,4-tetrahydroisoquinoline derivatives for potential DNase I (deoxyribonuclease I) inhibitory properties in vitro. Four of them inhibited DNase I with IC50 values below 200 μM. The most potent was 1-(6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolin-1-yl)propan-2-one ( 2 ) (IC50=134.35±11.38 μM) exhibiting slightly better IC50 value compared to three other active compounds, 2-[2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]-1-phenylethan-1-one ( 15 ) (IC50=147.51±14.87 μM), 2-[2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]cyclohexan-1-one ( 18 ) (IC50=149.07±2.98 μM) and 2-[6,7-dimethoxy-2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl]cyclohexan-1-one ( 22 ) (IC50=148.31±2.96 μM). Cytotoxicity assessment of the active DNase I inhibitors revealed a lack of toxic effects on the healthy cell lines MRC-5. Molecular docking and molecular dynamics simulations suggest that interactions with Glu 39, His 134, Asn 170, Tyr 211, Asp 251 and His 252 are an important factor for inhibitors affinity toward the DNase I. Observed interactions would be beneficial for the discovery of new active 1,2,3,4-tetrahydroisoquinoline-based inhibitors of DNase I, but might also encourage researchers to further explore and utilize potential therapeutic application of DNase I inhibitors, based on a versatile role of DNase I during apoptotic cell death. 相似文献
22.
David S. Goodsell Michel F. Sanner Arthur J. Olson Stefano Forli 《Protein science : a publication of the Protein Society》2021,30(1):31-43
The AutoDock suite provides a comprehensive toolset for computational ligand docking and drug design and development. The suite builds on 30 years of methods development, including empirical free energy force fields, docking engines, methods for site prediction, and interactive tools for visualization and analysis. Specialized tools are available for challenging systems, including covalent inhibitors, peptides, compounds with macrocycles, systems where ordered hydration plays a key role, and systems with substantial receptor flexibility. All methods in the AutoDock suite are freely available for use and reuse, which has engendered the continued growth of a diverse community of primary users and third‐party developers. 相似文献
23.
Wenbo Yu Sunhwan Jo Sirish Kaushik Lakkaraju David J. Weber Alexander D. MacKerell Jr 《Proteins》2019,87(4):289-301
Protein docking methods are powerful computational tools to study protein-protein interactions (PPI). While a significant number of docking algorithms have been developed, they are usually based on rigid protein models or with limited considerations of protein flexibility and the desolvation effect is rarely considered in docking energy functions, which may lower the accuracy of the predictions. To address these issues, we introduce a PPI energy function based on the site-identification by ligand competitive saturation (SILCS) framework and utilize the fast Fourier transform (FFT) correlation approach. The free energy content of the SILCS FragMaps represent an alternative to traditional energy grids and they can be efficiently utilized to guide FFT-based protein docking. Application of the approach to eight diverse test cases, including seven from Protein Docking Benchmark 5.0, showed the PPI prediction using SILCS approach (SILCS-PPI) to be competitive with several commonly used protein docking methods indicating that the method has the ability to both qualitatively and quantitatively inform the prediction of PPI. Results show the utility of the SILCS-PPI docking approach for determination of probability distributions of PPI interactions over the surface of both partner proteins, allowing for identification of alternate binding poses. Such binding poses are confirmed by experimental crystal contacts in our test cases. While more computationally demanding than available PPI docking technologies, we anticipate that the SILCS-PPI docking approach will offer an alternative methodology for improved evaluation of PPIs that could be used in a variety of fields from systems biology to excipient design for biologics-based drugs. 相似文献
24.
Kazeem O. Sulaiman Temitope U. Kolapo Abdulmujeeb T. Onawole Md. Ataul Islam Rukayat O. Adegoke Suaibu O. Badmus 《Journal of biomolecular structure & dynamics》2019,37(12):3029-3040
Ebola virus (EBOV) is a lethal human pathogen with a risk of global spread of its zoonotic infections, and Ebolavirus Zaire specifically has the highest fatality rate amongst other species. There is a need for continuous effort towards having therapies, as a single licensed treatment to neutralize the EBOV is yet to come into reality. This present study virtually screened the MCULE database containing almost 36 million compounds against the structure of a Zaire Ebola viral protein (VP) 35 and a consensus scoring of both MCULE and CLCDDW docking programs remarked five compounds as potential hits. These compounds, with binding energies ranging from –7.9 to –8.9?kcal/mol, were assessed for predictions of their physicochemical and bioactivity properties, as well as absorption, distribution, metabolism, excretion, and toxicity (ADMET) criteria. The results of the 50?ns molecular dynamics simulations showed the presence of dynamic stability between ligand and protein complexes, and the structures remained significantly unchanged at the ligand-binding site throughout the simulation period. Both docking analysis and molecular dynamics simulation studies suggested strong binding affinity towards the receptor cavity and these selected compounds as potential inhibitors against the Zaire Ebola VP 35. With respect to inhibition constant values, bioavailability radar and other physicochemical properties, compound A (MCULE-1018045960-0-1) appeared to be the most promising hit compound. However, the ligand efficiency and ligand efficiency scale need improvement during optimization, and also validation via in vitro and in vivo studies are necessary to finally make a lead compound in treating Ebola virus diseases.
Communicated by Ramaswamy H. Sarma 相似文献
25.
Dixit Sharma Ankita Sharma Shailender Kumar Verma Birbal Singh 《Journal of molecular recognition : JMR》2019,32(4)
Orientia tsutsugamushi (Ott) is a causative agent of chigger‐borne zoonosis, scrub typhus which is life threatening and highly pervasive illness in humans. In this report, we have mined and classified the proteins involved in pathways unique to Ott by using high‐throughput computational techniques. The 12 metabolic pathways were found to be unique to the pathogen. Forty‐six proteins were reported to be essential for the pathogen's survival and non‐homologous to the humans. The proteins were categorized into different classes, ie, enzymes, transporters, DNA‐binding, secretory, and outer membrane proteins. Further, in silico analysis of 46 proteins showed that 25 proteins were suitable therapeutic targets with known druggable properties. The structural modeling of B3CSG3 (MurA) protein was carried out and catalytic site essential for its functioning was analyzed. Virtual screening of chemical compounds was performed against modeled structure. The docking study by AutodockVina reported compound from PubChem with CID: 16036947 as best and potential inhibitor by means of docking score and binding affinity. The reliability and stability of the MurA‐16036947 complex were confirmed with molecular dynamics simulation. The report will provide insight to understand the mechanism of pathogenesis of Ott and instigate the development of effective treatment strategies against this disease. 相似文献
26.
Martin González-Andrade Rogelio Rodríguez-Sotres Abraham Madariaga-Mazón José Rivera-Chávez Rachel Mata Alejandro Sosa-Peinado 《Journal of biomolecular structure & dynamics》2016,34(1):78-91
In order to contribute to the structural basis for rational design of calmodulin (CaM) inhibitors, we analyzed the interaction of CaM with 14 classic antagonists and two compounds that do not affect CaM, using docking and molecular dynamics (MD) simulations, and the data were compared to available experimental data. The Ca2+-CaM-Ligands complexes were simulated 20 ns, with CaM starting in the “open” and “closed” conformations. The analysis of the MD simulations provided insight into the conformational changes undergone by CaM during its interaction with these ligands. These simulations were used to predict the binding free energies (ΔG) from contributions ΔH and ΔS, giving useful information about CaM ligand binding thermodynamics. The ΔG predicted for the CaM’s inhibitors correlated well with available experimental data as the r2 obtained was 0.76 and 0.82 for the group of xanthones. Additionally, valuable information is presented here: I) CaM has two preferred ligand binding sites in the open conformation known as site 1 and 4, II) CaM can bind ligands of diverse structural nature, III) the flexibility of CaM is reduced by the union of its ligands, leading to a reduction in the Ca2+-CaM entropy, IV) enthalpy dominates the molecular recognition process in the system Ca2+-CaM-Ligand, and V) the ligands making more extensive contact with the protein have higher affinity for Ca2+-CaM. Despite their limitations, docking and MD simulations in combination with experimental data continue to be excellent tools for research in pharmacology, toward a rational design of new drugs. 相似文献
27.
Mohd Faizan Siddiqui Mohd Shahnawaz Khan Fohad Mabood Husain 《Journal of biomolecular structure & dynamics》2019,37(9):2230-2241
Carbendazim is a benzimidazole fungicide used to control the fungal invasion. However, its exposure might lead to potential health problems. The present study evaluates the interaction of carbendazim (CAR) with human serum albumin (HSA) which is an important drug carrier protein and plays a very crucial role in the transportation of small molecules. A number of biophysical techniques were employed to investigate the binding of CAR with HSA. The increased UV-absorption of HSA on titrating with CAR suggests the formation of HSA–CAR complex and it could be due to the exposure of aromatic residues. The fluorescence study confirmed that CAR quenches the fluorescence of HSA and showed the static mode of quenching. CAR (50 µM) quenches around 56.14% of the HSA fluorescence. The quenching constant, binding constant, number of binding site and free energy change was calculated by fluorescence quenching experiment. Competitive displacement assay showed Sudlow’s site I as the primary binding site of CAR on HSA. The synchronous fluorescence study revealed the perturbation in the microenvironment around tyrosine and tryptophan residues upon binding of CAR to HSA. The circular dichroism results suggested that the binding of CAR to HSA altered its secondary structure. Molecular docking experiment demonstrated the binding of CAR to Sudlow’s site I of HSA. Docking studies suggested that the hydrogen bonding, van der Waals and pi-alkyl are playing role in the interaction of CAR with HSA. The study confirmed the conformational changes within HSA upon binding of CAR. 相似文献
28.
Imtiyaz Yousuf Masrat Bashir Farukh Arjmand Sartaj Tabassum 《Journal of biomolecular structure & dynamics》2019,37(12):3290-3304
The interaction studies of CuII nalidixic acid–DACH chemotherapeutic drug entity, [C36H50N8O6Cu] with serum albumin proteins, viz., human serum albumin (HSA) and bovine serum albumin (BSA) employing UV–vis, fluorescence, CD, FTIR and molecular docking techniques have been carried out. Complex [C36H50N8O6Cu] demonstrated strong binding affinity towards serum albumin proteins via hydrophobic contacts with binding constants, K?=?3.18?×?105 and 7.44?×?104 M–1 for HSA and BSA, respectively implicating a higher binding affinity for HSA. The thermodynamic parameters ΔG, ΔH and ΔS at different temperatures were also calculated and the interaction of complex [C36H50N8O6Cu] with HSA and BSA was found to be enthalpy and entropy favoured, nevertheless, complex [C36H50N8O6Cu] demonstrated higher binding affinity towards HSA than BSA evidenced from its higher binding constant values. Time resolved fluorescence spectroscopy (TRFS) was carried out to validate the static quenching mechanism of HSA/BSA fluorescence. The collaborative results of spectroscopic studies indicated that the microenvironment and the conformation of HSA and BSA (α–helix) were significantly perturbed upon interaction with complex [C36H50N8O6Cu]. Hirshfeld surfaces analysis and fingerprint plots revealed various intermolecular interactions viz., N–H····O, O–H····O and C–H····O linkages in a 2–dimensional framework that provide crucial information about the supramolecular architectures in the complex. Molecular docking studies were carried out to ascertain the preferential binding mode and affinity of complex [C36H50N8O6Cu] at the target site of HSA and BSA. Furthermore, only for Transmission electroscopy microscopy micrographs of HSA and BSA in presence of complex [C36H50N8O6Cu] revealed major protein morphological transitions and aggregation which validates efficient delivery of complex by serum proteins to the target site.
Communicated by Ramaswamy H. Sarma 相似文献
29.
《Bioorganic & medicinal chemistry letters》2019,29(24):126638
Viral infectivity factor (Vif) is one of the accessory protein of human immunodeficiency virus type I (HIV-1) that inhibits host defense factor, APOBEC3G (A3G), mediated viral cDNA hypermutations. Previous work developed a novel Vif inhibitor 2-amino-N-(2-methoxyphenyl)-6-((4-nitrophenyl)thio)benzamide (1) with strong antiviral activity. Through optimizations on the two side branches, a series of compound 1 derivatives (2–18) were designed, synthesized and tested in vitro for their antiviral activities. The biological results showed that compound 5 and 16 inhibited the virus replication efficiently with EC50 values of 9.81 and 4.62 μM. Meanwhile, low cytotoxicities on H9 cells were observed for the generated compounds by the MTT assay. The structure–activity relationship of compound 1 was preliminarily clarified, which gave rise to the development of more potent Vif inhibitors. 相似文献
30.
A series of thirty (30) thiazole analogs were prepared, characterized by 1H NMR, 13C NMR and EI-MS and evaluated for Acetylcholinesterase and butyrylcholinesterase inhibitory potential. All analogs exhibited varied butyrylcholinesterase inhibitory activity with IC50 value ranging between 1.59 ± 0.01 and 389.25 ± 1.75 μM when compared with the standard eserine (IC50, 0.85 ± 0.0001 μM). Analogs 15, 7, 12, 9, 14, 1, 30 with IC50 values 1.59 ± 0.01, 1.77 ± 0.01, 6.21 ± 0.01, 7.56 ± 0.01, 8.46 ± 0.01, 14.81 ± 0.32 and 16.54 ± 0.21 μM respectively showed excellent inhibitory potential. Seven analogs 15, 20, 19, 24, 28, 30 and 25 exhibited good acetylcholinesterase inhibitory potential with IC50 values 21.3 ± 0.50, 35.3 ± 0.64, 36.6 ± 0.70, 44.81 ± 0.81, 46.36 ± 0.84, 48.2 ± 0.06 and 48.72 ± 0.91 μM respectively. All other analogs also exhibited well to moderate enzyme inhibition. The binding mode of these compounds was confirmed through molecular docking. 相似文献