首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1019篇
  免费   233篇
  国内免费   25篇
  2024年   4篇
  2023年   13篇
  2022年   17篇
  2021年   16篇
  2020年   54篇
  2019年   41篇
  2018年   66篇
  2017年   60篇
  2016年   54篇
  2015年   64篇
  2014年   70篇
  2013年   116篇
  2012年   49篇
  2011年   96篇
  2010年   58篇
  2009年   83篇
  2008年   49篇
  2007年   52篇
  2006年   49篇
  2005年   41篇
  2004年   33篇
  2003年   22篇
  2002年   21篇
  2001年   22篇
  2000年   17篇
  1999年   17篇
  1998年   13篇
  1997年   6篇
  1996年   1篇
  1995年   12篇
  1994年   4篇
  1993年   7篇
  1992年   6篇
  1991年   9篇
  1990年   4篇
  1989年   3篇
  1986年   1篇
  1985年   6篇
  1984年   3篇
  1983年   7篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有1277条查询结果,搜索用时 466 毫秒
141.
This study represents part of a broader investigation into novel seed broadcasting methodologies as a means to optimize rehabilitation techniques following sand mining. Specifically, the study investigated the use of polymer seed coatings, time of sowing application, and in situ raking of the topsoil to optimize seedling recruitment to site. For polymer seed coatings, an ex situ trial was undertaken to evaluate seed coating effects on seedling emergence. Results demonstrated that seed coatings did not significantly inhibit maximum emergence percentage of 10 Banksia woodland species (out of 11 evaluated), but coated seeds from four species were on average 2–6 days slower to emerge than noncoated seeds. Seed coatings were found to have a greater effect in situ, with more coated seeds emerging than noncoated seeds. Topsoil raking (following seed sowing) and time of sowing were found to have the greatest impact on seedling emergence, with higher emergence following topsoil raking (5‐ to 90‐fold increase) and sowing in May (late autumn) (1.4‐ to 12‐fold increase) rather than in July (mid‐winter). The implications for mining rehabilitation are discussed, and areas for further research are considered.  相似文献   
142.
143.
An enzymatic reactor with lipase immobilized on a monolithic polymer support has been prepared and used to catalyze the transesterification of triacylglycerides into the fatty acid methyl esters commonly used for biodiesel. A design of experiments procedure was used to optimize the monolithic reactor with variables including control of the surface polarity of the monolith via variations in the length of the hydrocarbon chain in alkyl methacrylate monomer, time of grafting of 1-vinyl-4,4-dimethylazlactone used to activate the monolith, and time used for the immobilization of porcine lipase. Optimal conditions involved the use of a poly(stearyl methacrylate-co-ethylene dimethacrylate) monolith, grafted first with vinylazlactone, then treated with lipase for 2 h to carry out the immobilization of the enzyme. Best conditions for the transesterification of glyceryl tributyrate included a temperature of 37°C and a 10 min residence time of the substrate in the bioreactor. The reactor did not lose its activity even after pumping through it a solution of substrate equaling 1,000 reactor volumes. This enzymatic reactor was also used for the transesterification of triacylglycerides from soybean oil to fatty acid methyl esters thus demonstrating the ability of the reactor to produce biodiesel.  相似文献   
144.
Biodegradable superabsorbent polymers (SAPs) were prepared by grafting acrylamide onto starches then crosslinking with N,N′-methylene-bisacrylamide. This work focused on the effects of the amylose/amylopectin ratio of starches from the same source (corn) on the grafting reactions and performance of the resultant starch-based SAPs. To characterise each SAP, the acrylamide groups grafted onto the starch were detected by FTIR; grafting ratio and grafting efficiency were evaluated by a gravimetric method; and graft position and the length of the grafted segment were investigated by NMR. The relationships between the microstructures of the starches, and the graft reactions and performance of the SAPs were studied based on the amylose content in the starches. It was found that under the same reaction conditions, the grafting ratio and efficiency increased with increasing amylose content, which corresponds with water absorption ratio. NMR results indicated that the acrylamide group mainly grafted onto C6, and that the length of the grafted segment decreased with increasing amylopectin content in general, and in particular for waxy starch. The high molecular weight and branched structure of amylopectin reduced the mobility of the polymer chains and increased viscosity, which could explain the graft reactions and performance of the starch-based SAPs.  相似文献   
145.
Two mucoadhesive thiolated polymers were synthesized by the covalent attachment of homocysteine thiolactone (HT) to chitosan and N,N,N-trimethyl-chitosan (TM-chitosan) at various chitosan:HT ratios. The amount of thiol and disulphide groups immobilized on the chitosan influenced the polymer's mucoadhesion positively and negatively, respectively, with the optimal chitosan:HT (w/w) ratio being found to be 1:0.1. The interaction between mucin and chitosan and its three derivatives was highest for the thiolated chitosan derivatives but was pH dependent. HT-chitosan and TM-HT-chitosan, with the thiol groups of 64.15 and 32.48 μmol/g, respectively, displayed a 3.67- and 6.33-fold stronger mucoadhesive property compared to that of the unmodified chitosan at pH 1.2, but these differences were only ∼1.7-fold at pH 6.4. The swelling properties of TM-HT-chitosan and HT-chitosan were higher than that of chitosan and TM-chitosan, attaining a swelling ratio of up to 240% and 140%, respectively, at pH 1.2 within 2 h.  相似文献   
146.
Polyanhydrides are a class of biomaterials with excellent biocompatibility and drug delivery capabilities. While they have been studied extensively with conventional one-sample-at-a-time synthesis techniques, a more recent high-throughput approach has been developed enabling the synthesis and testing of large libraries of polyanhydrides1. This will facilitate more efficient optimization and design process of these biomaterials for drug and vaccine delivery applications. The method in this work describes the combinatorial synthesis of biodegradable polyanhydride film and nanoparticle libraries and the high-throughput detection of protein release from these libraries. In this robotically operated method (Figure 1), linear actuators and syringe pumps are controlled by LabVIEW, which enables a hands-free automated protocol, eliminating user error. Furthermore, this method enables the rapid fabrication of micro-scale polymer libraries, reducing the batch size while resulting in the creation of multivariant polymer systems. This combinatorial approach to polymer synthesis facilitates the synthesis of up to 15 different polymers in an equivalent amount of time it would take to synthesize one polymer conventionally. In addition, the combinatorial polymer library can be fabricated into blank or protein-loaded geometries including films or nanoparticles upon dissolution of the polymer library in a solvent and precipitation into a non-solvent (for nanoparticles) or by vacuum drying (for films). Upon loading a fluorochrome-conjugated protein into the polymer libraries, protein release kinetics can be assessed at high-throughput using a fluorescence-based detection method (Figures 2 and 3) as described previously1. This combinatorial platform has been validated with conventional methods2 and the polyanhydride film and nanoparticle libraries have been characterized with 1H NMR and FTIR. The libraries have been screened for protein release kinetics, stability and antigenicity; in vitro cellular toxicity, cytokine production, surface marker expression, adhesion, proliferation and differentiation; and in vivo biodistribution and mucoadhesion1-11. The combinatorial method developed herein enables high-throughput polymer synthesis and fabrication of protein-loaded nanoparticle and film libraries, which can, in turn, be screened in vitro and in vivo for optimization of biomaterial performance.  相似文献   
147.
148.
质粒pRSET-A前导肽串联多聚体的构建及其多克隆抗体制备*   总被引:1,自引:0,他引:1  
质粒pRSET-A是一个常用的高效原核表达载体,编码一N端含组氨酸标签(6×His)的34aa前导肽序列,以方便利用抗组氨酸标签抗体鉴定或纯化所表达的重组蛋白。本实验设计一对两侧含编码疏水性氨基酸密码子的引物,经过扩增前导序列10~34aa基因序列,并重新克隆入质粒pRSET-A构建串联二聚体后,再利用质粒pRSET-A的BamH I / Bgl II同尾酶克隆位点,经一系列简单的酶切和连接,快速构建这一前导肽中不含组氨酸标签序列的串联多聚体基因,并成功表达其六聚体重组蛋白。将此重组蛋白主动免疫山羊,获得了能够特异地识别pRSET-A编码的N端前导肽序列的抗体。结果显示,所制备的羊抗10~34aa前导肽抗体能够识别pRSET-A指导表达的含有完整前导肽的重组蛋白,但不能识别不含10~34aa序列的重组蛋白;同时,利用同位酶技术可以快速高效构建短肽的串联多聚体以制备具有高免疫原性的亚单位疫苗或免疫调控物质。  相似文献   
149.
HBP-NH2 grafted cotton fiber: Preparation and salt-free dyeing properties   总被引:2,自引:1,他引:1  
In order to achieve salt-free dyeing on cotton fiber with reactive dyes, an amino-terminated hyperbranched polymer (HBP-NH2) grafted cotton fiber (HGCF) was prepared by the oxidation of cotton fiber with sodium periodate in water and subsequent grafted with an aqueous solution of HBP-NH2. Fourier transform infrared spectrophotometry (FTIR) of the HGCF indicated that all aldehyde groups of the oxidized cotton fiber have reacted with amino groups of the HBP-NH2. As a result, the HGCF fabrics prepared under the optimum conditions displayed markedly enhanced colour strength when dyed with reactive dyes using salt-free dyeing. The washing fastness, rubbing fastness and levelling properties of the dyed HGCF fabrics were also good compared with those obtained by conventional dyeing. The zeta-potential of the HGCF in liquid phase was tested and found to be positive at pHs lower than 6.5. The dyeing behaviour of Reactive Brilliant Yellow A-4GLN on the HGCF was found to follow a Langmuir-type adsorption curve.  相似文献   
150.
The secondary cell wall polymer (SCWP) from Geobacillus stearothermophilus PV72/p2, which is involved in the anchoring of the surface-layer protein to the bacterial cell wall layer, is composed of 2-amino-2-deoxy- and 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-mannose, and 2-acetamido-2-deoxy-D-mannuronic acid. The primary structure of the acid-degraded polysaccharide--liberated by HF-treatment from the cell wall--was determined by high-field NMR spectroscopy and mass spectrometry using N-acetylated and hydrolyzed polysaccharide derivatives as well as Smith-degradation. The polysaccharide was shown to consist of a tetrasaccharide repeating unit containing a pyruvic acid acetal at a side-chain 2-acetamido-2-deoxy-alpha-D-mannopyranosyl residue. Substoichiometric substitutions of the repeating unit were observed concerning the degree of N-acetylation of glucosamine residues and the presence of side-chain linked 2-acetamido-2-deoxy-beta-D-glucopyranosyl units: [Formula: see text].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号