首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9739篇
  免费   1058篇
  国内免费   100篇
  10897篇
  2024年   15篇
  2023年   192篇
  2022年   182篇
  2021年   296篇
  2020年   365篇
  2019年   434篇
  2018年   400篇
  2017年   346篇
  2016年   306篇
  2015年   406篇
  2014年   560篇
  2013年   653篇
  2012年   455篇
  2011年   643篇
  2010年   543篇
  2009年   431篇
  2008年   477篇
  2007年   387篇
  2006年   453篇
  2005年   392篇
  2004年   357篇
  2003年   335篇
  2002年   263篇
  2001年   163篇
  2000年   168篇
  1999年   183篇
  1998年   165篇
  1997年   158篇
  1996年   143篇
  1995年   113篇
  1994年   102篇
  1993年   89篇
  1992年   97篇
  1991年   83篇
  1990年   64篇
  1989年   74篇
  1988年   61篇
  1987年   55篇
  1986年   41篇
  1985年   57篇
  1984年   47篇
  1983年   20篇
  1982年   36篇
  1981年   23篇
  1980年   18篇
  1979年   20篇
  1978年   4篇
  1977年   7篇
  1976年   6篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
The tiny parasitoid wasp, Encarsia formosa, has been used successfully to control greenhouse whiteflies (GHWFs) in greenhouses in many countries throughout the world. Therefore, there has been considerable interest in developing methods for artificially rearing this wasp. However, little information is available concerning the regulation of its development including the host-parasitoid interactions that are required for the parasitoid to complete its life cycle. Here we confirm that parasitoid developmental rates differ significantly based upon the host instar parasitized. Development was faster when 3rd and 4th instar GHWFs were offered for parasitization than when 1st or 2nd instars were used. Our results show that it is primarily the embryo and the first two parasitoid instars that exhibit prolonged developmental times when 1st and 2nd instar whiteflies are parasitized. Although percent emergence was not affected by host age at the time of parasitization, adult longevity as well as adult emergence pattern varied greatly depending upon the instar parasitized. When 3rd and 4th instar GHWFs were selected for oviposition, adult wasps lived significantly longer than when 1st or 2nd instars were used; also, there was a sharp emergence peak on the 2nd day after emergence was first observed (reduced or absent when 1st or 2nd instar GHWFs were parasitized) and the emergence period was reduced from between 8 and 11 days to 5 days. In general, the younger the host instar parasitized, the less synchronous was parasitoid development. Previous reports that E. formosa will not molt to the 2nd instar until the host has reached its 4th instar were not confirmed. When 1st instar host nymphs were parasitized, 2nd instar parasitoids were detected in 3rd instar hosts. Importantly, however, no matter which instar was parasitized, the parasitoid never molted to its last instar until the host had reached Stage 5 of its last instar, a stage in which host pharate adult formation has been initiated. It appears, then, that a condition(s) associated with host pharate adult formation is required for the parasitoid's final larval molt. Results reported here should facilitate the development of in vitro rearing systems for E. formosa.  相似文献   
102.
The endogenous circadian pacemaker of mammals is synchronized to the environmental day by the ambient cycle of relative light and dark. The present studies assessed the actions of light in a novel circadian entrainment paradigm where activity rhythms are bifurcated following exposure to a 24-h light:dark:light:dark (LDLD) cycle. Bifurcated entrainment under LDLD reflects the temporal dissociation of component oscillators that comprise the circadian system and is facilitated when daily scotophases are dimly lit rather than completely dark. Although bifurcation can be stably maintained in LDLD, it is quickly reversed under constant conditions. Here the authors examine whether dim scotophase illumination acts to maintain bifurcated entrainment under LDLD through potential interactions with the parametric actions of bright light during the two daily photophases. In three experiments, wheel-running rhythms of Syrian hamsters were bifurcated under LDLD with dimly lit scotophases, and after several weeks, dim scotophase illumination was either retained or extinguished. Additionally, “full” and “skeleton” photophases were employed under LDLD cycles with dimly lit or completely dark scotophases to distinguish parametric from nonparametric effects of bright light. Rhythm bifurcation was more stable in full versus skeleton LDLD cycles. Dim light facilitated the maintenance of bifurcated entrainment under full LDLD cycles but did not prevent the loss of rhythm bifurcation in skeleton LDLD cycles. These studies indicate that parametric actions of bright light maintain the bifurcated entrainment state; that dim scotophase illumination increases the stability of the bifurcated state; and that dim light interacts with the parametric effects of bright light to increase the stability of rhythm bifurcation under full LDLD cycles. A further understanding of the novel actions of dim light may lead to new strategies for understanding, preventing, and treating chronobiological disturbances. (Author correspondence: )  相似文献   
103.
104.
Adenosine is known to modulate dopamine responses in several brain areas. Here, we show that tonic activation of adenosine receptors is able to impede desensitization of D1 dopamine receptors. As measured by cAMP accumulation in transfected COS-7 cells, long-term exposure to dopamine agonists promoted desensitization of D1B receptor but not that of D1A receptor. The inability of D1A receptor to desensitize was a result of the adenosine present in culture medium acting through activation of adenosine A1 receptors. Cell incubation with either adenosine deaminase, CGS-15943, a generic adenosine receptor antagonist, or the A1 antagonist DPCPX restored the long-term desensitization time-course of D1A receptors. In Ltk cells stably expressing A1 adenosine receptors and D1A dopamine receptors, pre-treatment of cells with R(-)-PIA, a full A1 receptor agonist, did not significantly inhibit the acute increase in cAMP levels induced by D1 receptor agonists, but blocked desensitization of D1A receptors. However, simultaneous activation of A1 and D1A receptors promoted a delayed D1A receptor desensitization. This suggests that functional interaction between A1 and D1A receptors may depend on the activation kinetics of components regulating D1 receptor responses, acting differentially on D1A and D1B receptors.  相似文献   
105.
Studies of facilitative interactions as drivers of plant richness along environmental gradients often assume the existence of an overarching stress gradient that equally affects the performance of all the species in a given community. However, co-existing species differ in their ecophysiological adaptations, and do not experience the same stress level under particular environmental conditions. Moreover, these studies assume a unimodal relationship between richness and biomass, which is not as general as previously thought. We ignored these assumptions to assess changes in plant–plant interactions and their effect on local species richness across environmental gradients in semi-arid areas of Spain and Australia. We aimed to understand the relative importance of direct (microhabitat amelioration) and indirect (changes in the competitive relationships among the understorey species: niche segregation, competitive exclusion or intransitivity) mechanisms that might underlie the effects of nurse plants on local species richness. By jointly studying these direct and indirect mechanisms using a unifying framework, we found that nurse plants (trees, shrubs and tussock grasses) increased local richness not only by expanding the niche of neighbouring species but also by increasing niche segregation among them, though the latter was not important in all cases. The outcome of the competition-facilitation continuum varied depending on the study area, likely because the different types of stress gradient considered. When driven by both rainfall and temperature, or rainfall alone, the community-wide importance of nurse plants remained constant (Spanish sites), or showed a unimodal relationship along the gradient (Australian sites). This study expands our understanding of the relative roles of plant–plant interactions and environmental conditions as drivers of local species richness in semi-arid environments. The results can also be used to refine predictions about the response of plant communities to environmental change, and to clarify the relative importance of biotic interactions as drivers of such responses.  相似文献   
106.
Understanding initial cell growth, interactions associated with the process of expansion of human neural precursor cells (hNPCs), and cellular events pre- and postdifferentiation are important for developing bioprocessing protocols to reproducibly generate multipotent cells that can be used in basic research or the treatment of neurodegenerative disorders. Herein, we report the in vitro responses of telencephalon hNPCs grown in a serum-free growth medium using time-lapse live imaging as well as cell-surface marker, aggregate size, and immunocytochemical analyses. Time-lapse analysis of hNPC initial expansion indicated that cell-surface attachment in stationary culture and the frequency of cell-cell interaction in suspension conditions are important for subsequent aggregate formation and hNPC growth. In the absence of cell-surface attachment in low-attachment stationary culture, large aggregates of cells were formed and expansion was adversely affected. The majority of the telencephalon hNPCs expressed CD29, CD90, and CD44 (cell surface markers involved in cell-ECM and cell-cell interactions to regulate biological functions such as proliferation), suggesting that cell-surface attachment and cell-cell interactions play a significant role in the subsequent formation of cell aggregates and the expansion of hNPCs. Before differentiation, about 90% of the cells stained positive for nestin and expressed two neural precursor cells surface markers (CD133 and CD24). Upon withdrawal of growth cytokines, hNPCs first underwent cell division and then differentiated preferentially towards a neuronal rather than a glial phenotype. This study provides key information regarding human NPC behavior under different culture conditions and favorable culture conditions that are important in establishing reproducible hNPC expansion protocols.  相似文献   
107.
To investigate the mechanism of regulation of sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) by phospholamban (PLB), we expressed Cerulean-SERCA and yellow fluorescent protein (YFP)-PLB in adult rabbit ventricular myocytes using adenovirus vectors. SERCA and PLB were localized in the sarcoplasmic reticulum and were mobile over multiple sarcomeres on a timescale of tens of seconds. We also observed robust fluorescence resonance energy transfer (FRET) from Cerulean-SERCA to YFP-PLB. Electrical pacing of cardiac myocytes elicited cytoplasmic Ca(2+) elevations, but these increases in Ca(2+) produced only modest changes in SERCA-PLB FRET. The data suggest that the regulatory complex is not disrupted by elevations of cytosolic calcium during cardiac contraction (systole). This conclusion was also supported by parallel experiments in heterologous cells, which showed that FRET was reduced but not abolished by calcium. Thapsigargin also elicited a small decrease in PLB-SERCA binding affinity. We propose that PLB is not displaced from SERCA by high calcium during systole, and relief of functional inhibition does not require dissociation of the regulatory complex. The observed modest reduction in the affinity of the PLB-SERCA complex with Ca(2+) or thapsigargin suggests that the binding interface is altered by SERCA conformational changes. The results are consistent with multiple modes of PLB binding or alternative binding sites.  相似文献   
108.
Ecological speciation studies have more thoroughly addressed premating than postmating reproductive isolation. This study examines multiple postmating barriers between host forms of Neochlamisus bebbianae leaf beetles that specialize on Acer and Salix trees. We demonstrate cryptic isolation and reduced hybrid fitness via controlled matings of these host forms. These findings reveal host-associated postmating isolation, although a nonecological, 'intrinsic' basis for these patterns cannot be ruled out. Host preference and performance results among cross types further suggest sex-linked maternal effects on these traits, whereas family effects indicate their genetic basis and associated variation. Genes of major effect appear to influence these traits. Together with previous findings of premating isolation and adaptive differentiation in sympatry, our results meet many assumptions of 'speciation with gene flow' models. Here, such gene flow is likely asymmetric, with consequences for the dynamics of future ecological divergence and potential ecological speciation of these host forms.  相似文献   
109.
110.
Climate change is predicted to increase the risk of drought in many temperate agroecosystems. While the impact of drought on aboveground plant‐herbivore‐natural enemy interactions has been studied, little is known about its effects on belowground tritrophic interactions and root defense chemistry. We investigated the effects of low soil moisture on the interaction between maize, the western corn rootworm (WCR, Diabrotica virgifera), and soil‐borne natural enemies of WCR. In a manipulative field experiment, reduced soil moisture and WCR attack reduced plant performance and increased benzoxazinoid levels. The negative effects of WCR on cob dry weight and silk emergence were strongest at low moisture levels. Inoculation with entomopathogenic nematodes (EPNs, Heterorhabditis bacteriophora) was ineffective in controlling WCR, and the EPNs died rapidly in the warm and dry soil. However, ants of the species Solenopsis molesta invaded the experiment, were more abundant in WCR‐infested pots and predated WCR independently of soil moisture. Ant presence increased root and shoot biomass and was associated with attenuated moisture‐dependent effects of WCR on maize cob weight. Our study suggests that apart from directly reducing plant performance, drought can also increase the negative effects of root herbivores such as WCR. It furthermore identifies S. molesta as a natural enemy of WCR that can protect maize plants from the negative impact of herbivory under drought stress. Robust herbivore natural enemies may play an important role in buffering the impact of climate change on plant‐herbivore interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号