首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39351篇
  免费   1217篇
  国内免费   900篇
  41468篇
  2024年   15篇
  2023年   303篇
  2022年   540篇
  2021年   675篇
  2020年   607篇
  2019年   888篇
  2018年   954篇
  2017年   531篇
  2016年   675篇
  2015年   1156篇
  2014年   2820篇
  2013年   2927篇
  2012年   2341篇
  2011年   3441篇
  2010年   2799篇
  2009年   1822篇
  2008年   1974篇
  2007年   1878篇
  2006年   1725篇
  2005年   1489篇
  2004年   1346篇
  2003年   1196篇
  2002年   976篇
  2001年   587篇
  2000年   558篇
  1999年   615篇
  1998年   669篇
  1997年   578篇
  1996年   519篇
  1995年   560篇
  1994年   507篇
  1993年   415篇
  1992年   357篇
  1991年   326篇
  1990年   277篇
  1989年   266篇
  1988年   227篇
  1987年   219篇
  1986年   161篇
  1985年   219篇
  1984年   277篇
  1983年   243篇
  1982年   239篇
  1981年   145篇
  1980年   166篇
  1979年   113篇
  1978年   45篇
  1977年   38篇
  1976年   22篇
  1973年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Cannabinoid signalling   总被引:3,自引:0,他引:3  
After their discovery, the two known cannabinoid receptors, CB(1) and CB(2), have been the focus of research into the cellular signalling mechanisms of cannabinoids. The initial assessment, mainly derived from expression studies, was that cannabinoids, via G(i/o) proteins, negatively modulate cyclic AMP levels, and activate inward rectifying K(+) channels. Recent findings have complicated this assessment on different levels: (1) cannabinoids include a wide range of compounds with varying profiles of affinity and efficacy at the known CB receptors, and these profiles do not necessarily match their biological activity; (2) CB receptors appear to be intrinsically active and possibly coupled to more than one type of G protein; (3) CB receptor signalling mechanisms are diverse and dependent on the system studied; (4) cannabinoids have other targets than CB receptors. The aim of this mini review is to discuss the current literature regarding CB receptor signalling pathways. These include regulation of adenylyl cyclase, MAP kinase, intracellular Ca(2+), and ion channels. In addition, actions of cannabinoids that are not mediated by CB(1) or CB(2) receptors are discussed.  相似文献   
972.
973.
We present evidence that the 5-hydroxytryptamine(1A) (5-HT(1A)) receptor antagonist, N-{2-[4-(2-methoxyphenyl)-1-piperazinyl]-ethyl}-N-(2-pyridinyl)cyclohexanecarboxamide (WAY-100635), can induce receptor internalization in a human (h)5-HT(1A) receptor Chinese hamster ovary (CHO-K1) cell system. Exposure of h5-HT(1A) CHO cells to WAY-100635 decreased the cell-surface h5-HT(1A) receptor density in a way that was both time (24-72 h) and concentration (1-100 nm) dependent.[(3)H]WAY-100635 and [(3)H]8-hydroxy-dipropylaminotetralin ([(3)H]8-OH-DPAT) saturation analyses demonstrated a significant reduction (50-60%) in total h5-HT(1A) receptor number in the WAY-100635-treated (100 nm; 72 h) compared with control cells. In WAY-100635-treated cells, the 8-OH-DPAT-mediated inhibition of forskolin (FSK)-stimulated cAMP accumulation was right-shifted and the maximal inhibitory response of 8-OH-DPAT was impaired compared with control cells. Similar results were obtained for 8-OH-DPAT-mediated Ca(2+) mobilization after WAY-100635 treatment. h5-HT(1A) receptors labeled with [(3)H]WAY-100635, as well as [(3)H]4-(2'-Methoxy)-phenyl-1-[2'-(N-2'-pyridinyl)-p-fluorobenzamido]ethyl-piperazine (MPPF), exhibited a time-dependent rate of cellular internalization that was blocked by endocytotic suppressors and was pertussis-toxin insensitive. In contrast, quantitative autoradiographic studies demonstrated that chronic treatment of rats with WAY-100635 for two weeks produced a region-specific increase in the 5-HT(1A) receptor density. In conclusion, prolonged exposure of an h5-HT(1A) cell-based system to the 5-HT(1A) antagonist, WAY-100635, induced a paradoxical internalization of cell surface receptor resulting in depressed functional activity. This suggests that an antagonist can influence 5-HT(1A) receptor recycling in vitro differently to in vivo regulatory conditions.  相似文献   
974.
Discovered in 1902 by Georg Maurer as a peculiar dotted staining pattern observable by light microscopy in the cytoplasm of erythrocytes infected with the human malarial parasite Plasmodium falciparum, the function of Maurer's clefts have remained obscure for more than a century. The growing interest in protein sorting and trafficking processes in malarial parasites has recently aroused the Maurer's clefts from their deep slumber. Mounting evidence suggests that Maurer's clefts are a secretory organelle, which the parasite establishes within its host erythrocyte, but outside its own confines, to route parasite proteins across the host cell cytoplasm to the erythrocyte surface where they play a role in nutrient uptake and immune evasion processes. Moreover, Maurer's clefts seem to play a role in cell signaling, merozoite egress, phospholipid biosynthesis and, possibly, other biochemical pathways. Here, we review our current knowledge of the ultrastructure of Maurer's clefts, their proteinaceous composition and their function in protein trafficking.  相似文献   
975.
We combine a new, extremely fast technique to generate a library of low energy structures of an oligopeptide (by using mutually orthogonal Latin squares to sample its conformational space) with a genetic algorithm to predict protein structures. The protein sequence is divided into oligopeptides, and a structure library is generated for each. These libraries are used in a newly defined mutation operator that, together with variation, crossover, and diversity operators, is used in a modified genetic algorithm to make the prediction. Application to five small proteins has yielded near native structures.  相似文献   
976.
Pamenter ME  Hogg DW  Buck LT 《FEBS letters》2008,582(12):1738-1742
Increased nitric oxide (NO) production from hypoxic mammalian neurons increases cerebral blood flow (CBF) but also glutamatergic excitotoxicity and DNA fragmentation. Anoxia-tolerant freshwater turtles have evolved NO-independent mechanisms to increase CBF; however, the mechanism(s) of NO regulation are not understood. In turtle cortex, anoxia or NMDAR blockade depressed NO production by 27+/-3% and 41+/-5%, respectively. NMDAR antagonists also reduced the subsequent anoxic decrease in NO by 74+/-6%, suggesting the majority of the anoxic decrease is due to endogenous suppression of NMDAR activity. Prevention of NO-mediated damage during the transition to and from anoxia may be incidental to natural reductions of NMDAR activity in the anoxic turtle cortex.  相似文献   
977.
Dopamine-modulated behaviors, including information processing and reward, are subject to behavioral plasticity. Disruption of these behaviors is thought to support drug addictions and psychoses. The plasticity of dopamine-mediated behaviors, for example, habituation and sensitization, are not well understood at the molecular level. We show that in the nematode Caenorhabditis elegans, a D1-like dopamine receptor gene (dop-1) modulates the plasticity of mechanosensory behaviors in which dopamine had not been implicated previously. A mutant of dop-1 displayed faster habituation to nonlocalized mechanical stimulation. This phenotype was rescued by the introduction of a wild-type copy of the gene. The dop-1 gene is expressed in mechanosensory neurons, particularly the ALM and PLM neurons. Selective expression of the dop-1 gene in mechanosensory neurons using the mec-7 promoter rescues the mechanosensory deficit in dop-1 mutant animals. The tyrosine hydroxylase-deficient C. elegans mutant (cat-2) also displays these specific behavioral deficits. These observations provide genetic evidence that dopamine signaling modulates behavioral plasticity in C. elegans.  相似文献   
978.
Glutamate carboxypeptidase II (GCP II) inhibition has previously been shown to be protective against long-term neuropathy in diabetic animals. In the current study, we have determined that the GCP II inhibitor 2-(phosphonomethyl) pentanedioic acid (2-PMPA) is protective against glucose-induced programmed cell death (PCD) and neurite degeneration in dorsal root ganglion (DRG) neurons in a cell culture model of diabetic neuropathy. In this model, inhibition of caspase activation is mediated through the group II metabotropic glutamate receptor, mGluR3. 2-PMPA neuroprotection is completely reversed by the mGluR3 antagonist (S)-alpha-ethylglutamic acid (EGLU). In contrast, group I and III mGluR inhibitors have no effect on 2-PMPA neuroprotection. Furthermore, we show that two mGluR3 agonists, the direct agonist (2R,4R)-4-aminopyrrolidine-2, 4-dicarboxylate (APDC) and N-acetyl-aspartyl-glutamate (NAAG) provide protection to neurons exposed to high glucose conditions, consistent with the concept that 2-PMPA neuroprotection is mediated by increased NAAG activity. Inhibition of GCP II or mGluR3 may represent a novel mechanism to treat neuronal degeneration under high-glucose conditions.  相似文献   
979.
980.
The mitochondrial amidoxime reducing component mARC is a newly discovered molybdenum enzyme that is presumed to form the catalytical part of a three-component enzyme system, consisting of mARC, heme/cytochrome b5, and NADH/FAD-dependent cytochrome b5 reductase. mARC proteins share a significant degree of homology to the molybdenum cofactor-binding domain of eukaryotic molybdenum cofactor sulfurase proteins, the latter catalyzing the post-translational activation of aldehyde oxidase and xanthine oxidoreductase. The human genome harbors two mARC genes, referred to as hmARC-1/MOSC-1 and hmARC-2/MOSC-2, which are organized in a tandem arrangement on chromosome 1. Recombinant expression of hmARC-1 and hmARC-2 proteins in Escherichia coli reveals that both proteins are monomeric in their active forms, which is in contrast to all other eukaryotic molybdenum enzymes that act as homo- or heterodimers. Both hmARC-1 and hmARC-2 catalyze the N-reduction of a variety of N-hydroxylated substrates such as N-hydroxy-cytosine, albeit with different specificities. Reconstitution of active molybdenum cofactor onto recombinant hmARC-1 and hmARC-2 proteins in the absence of sulfur indicates that mARC proteins do not belong to the xanthine oxidase family of molybdenum enzymes. Moreover, they also appear to be different from the sulfite oxidase family, because no cysteine residue could be identified as a putative ligand of the molybdenum atom. This suggests that the hmARC proteins and sulfurase represent members of a new family of molybdenum enzymes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号