首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18835篇
  免费   321篇
  国内免费   227篇
  19383篇
  2023年   68篇
  2022年   156篇
  2021年   180篇
  2020年   140篇
  2019年   199篇
  2018年   245篇
  2017年   152篇
  2016年   170篇
  2015年   530篇
  2014年   1557篇
  2013年   1431篇
  2012年   1539篇
  2011年   2171篇
  2010年   1914篇
  2009年   863篇
  2008年   831篇
  2007年   748篇
  2006年   681篇
  2005年   560篇
  2004年   515篇
  2003年   509篇
  2002年   309篇
  2001年   163篇
  2000年   183篇
  1999年   228篇
  1998年   255篇
  1997年   237篇
  1996年   221篇
  1995年   261篇
  1994年   239篇
  1993年   201篇
  1992年   177篇
  1991年   167篇
  1990年   138篇
  1989年   147篇
  1988年   120篇
  1987年   116篇
  1986年   85篇
  1985年   135篇
  1984年   173篇
  1983年   149篇
  1982年   155篇
  1981年   81篇
  1980年   106篇
  1979年   73篇
  1978年   26篇
  1977年   28篇
  1976年   17篇
  1973年   9篇
  1972年   7篇
排序方式: 共有10000条查询结果,搜索用时 25 毫秒
81.
The dramatically increasing number of new protein sequences arising from genomics 4 proteomics requires the need for methods to rapidly and reliably infer the molecular and cellular functions of these proteins. One such approach, structural genomics, aims to delineate the total repertoire of protein folds in nature, thereby providing three-dimensional folding patterns for all proteins and to infer molecular functions of the proteins based on the combined information of structures and sequences. The goal of obtaining protein structures on a genomic scale has motivated the development of high throughput technologies and protocols for macromolecular structure determination that have begun to produce structures at a greater rate than previously possible. These new structures have revealed many unexpected functional inferences and evolutionary relationships that were hidden at the sequence level. Here, we present samples of structures determined at Berkeley Structural Genomics Center and collaborators laboratories to illustrate how structural information provides and complements sequence information to deduce the functional inferences of proteins with unknown molecular functions.Two of the major premises of structural genomics are to discover a complete repertoire of protein folds in nature and to find molecular functions of the proteins whose functions are not predicted from sequence comparison alone. To achieve these objectives on a genomic scale, new methods, protocols, and technologies need to be developed by multi-institutional collaborations worldwide. As part of this effort, the Protein Structure Initiative has been launched in the United States (PSI; www.nigms.nih.gov/funding/psi.html). Although infrastructure building and technology development are still the main focus of structural genomics programs [1–6], a considerable number of protein structures have already been produced, some of them coming directly out of semi-automated structure determination pipelines [6–10]. The Berkeley Structural Genomics Center (BSGC) has focused on the proteins of Mycoplasma or their homologues from other organisms as its structural genomics targets because of the minimal genome size of the Mycoplasmas as well as their relevance to human and animal pathogenicity (http://www.strgen.org). Here we present several protein examples encompassing a spectrum of functional inferences obtainable from their three-dimensional structures in five situations, where the inferences are new and testable, and are not predictable from protein sequence information alone.  相似文献   
82.
Abstract

Conserved protein sequence segments are commonly believed to correspond to functional sites in the protein sequence. A novel approach is proposed to profile the changing degree of conservation along the protein sequence, by evaluating the occurrence frequencies of all short oligopeptides of the given sequence in a large proteome database. Thus, a protein sequence conservation profile can be plotted for every protein. The profile indicates where along the sequences the potential functional (conserved) sites are located. The corresponding oligopeptides belonging to the sites are very frequent across many prokaryotic species. Analysis of a representative set of such profiles reveals a common feature of all examined proteins: they consist of sequence modules represented by the peaks of conservation. Typical size of the modules (peak-to-peak distance) is 25–30 amino acid residues.  相似文献   
83.
Hypertension now affects about 600 million people worldwide and is a leading cause of death in the Western world. The spontaneously hypertensive rat (SHR), provides a useful model to investigate hypertensive heart failure (HF). The SHR model replicates the clinical progression of hypertension in humans, wherein early development of hypertension is followed by a long stable period of compensated cardiac hypertrophy that slowly progresses to HF. Although the hypertensive failing heart generally shows increased substrate preference towards glucose and impaired mitochondrial function, the cause-and-effect relationship between these characteristics is incompletely understood. To explore these pathogenic processes, we compared cardiac mitochondrial proteomes of 20-month-old SHR and Wistar-Kyoto controls by iTRAQ-labelling combined with multidimensional LC/MS/MS. Of 137 high-scoring proteins identified, 79 differed between groups. Changes were apparent in several metabolic pathways, chaperone and antioxidant systems, and multiple subunits of the oxidative phosphorylation complexes were increased (complexes I, III and IV) or decreased (complexes II and V) in SHR heart mitochondria. Respiration assays on skinned fibres and isolated mitochondria showed markedly lower respiratory capacity on succinate. Enzyme activity assays often also showed mismatches between increased protein expression and activities suggesting elevated protein expression may be compensatory in the face of pathological stress.  相似文献   
84.
We have analyzed the relationships of homologues of the Escherichia coli CcmC protein for probable topological features and evolutionary relationships. We present bioinformatic evidence suggesting that the integral membrane proteins CcmC (E. coli; cytochrome c biogenesis System I), CcmF (E. coli; cytochrome c biogenesis System I) and ResC (Bacillus subtilis; cytochrome c biogenesis System II) are all related. Though the molecular functions of these proteins have not been fully described, they appear to be involved in the provision of heme to c-type cytochromes, and so we have named them the putative Heme Handling Protein (HHP) family (TC #9.B.14). Members of this family exhibit 6, 8, 10, 11, 13 or 15 putative transmembrane segments (TMSs). We show that intragenic triplication of a 2 TMS element gave rise to a protein with a 6 TMS topology, exemplified by CcmC. This basic 6 TMS unit then gave rise to two distinct types of proteins with 8 TMSs, exemplified by ResC and the archaeal CcmC, and these further underwent fusional or insertional events yielding proteins with 10, 11 and 13 TMSs (ResC homologues) as well as 15 TMSs (CcmF homologues). Specific evolutionary pathways taken are proposed. This work provides the first evidence for the pathway of appearance of distantly related proteins required for post-translational maturation of c-type cytochromes in bacteria, plants, protozoans and archaea.  相似文献   
85.
We have previously described a highly diverse library of artificial repeat proteins based on thermostable HEAT-like repeats, named αRep. αReps binding specifically to proteins difficult to crystallize have been selected and in several examples, they made possible the crystallization of these proteins. To further simplify the production and crystallization experiments we have explored the production of chimeric proteins corresponding to covalent association between the targets and their specific binders strengthened by a linker. Although chimeric proteins with expression partners are classically used to enhance expression, these fusions cannot usually be used for crystallization. With specific expression partners like a cognate αRep this is no longer true, and chimeric proteins can be expressed purified and crystallized. αRep selection by phage display suppose that at least a small amount of the target protein should be produced to be used as a bait for selection and this might, in some cases, be difficult. We have therefore transferred the αRep library in a new construction adapted to selection by protein complementation assay (PCA). This new procedure allows to select specific binders by direct interaction with the target in the cytoplasm of the bacteria and consequently does not require preliminary purification of target protein. αRep binders selected by PCA or by phage display can be used to enhance expression, stability, solubility and crystallogenesis of proteins that are otherwise difficult to express, purify and/or crystallize.  相似文献   
86.
Across populations of Drosophila melanogaster along the Australian eastern coastline latitudinal clines occur in both heat-knockdown tolerance and hardened heat-knockdown tolerance – low latitude tropical populations being more tolerant. A latitudinal cline also occurs for rates of total protein synthesis following a mild heat stress, with tropical populations having higher rates. Since the control of protein synthesis following heat stress is an important component of the cellular heat-shock response, we hypothesised that the higher rates of synthesis that follow a heat stimulus lead to higher knockdown tolerance and underpins the cline. However, levels of heat-stimulated total protein synthesis have been negatively related to heat-hardening capacity, a somewhat conflicting result. Here we examine the relationship between these physiological and adaptive traits in a set of 40 family lines derived from a hybrid laboratory population established by crossing populations from either end of the latitudinal transect. Among these lines high levels of heat-stimulated total protein synthesis were associated with both low basal and low heat-hardened adult knockdown time, confirming the importance of a negative relationship between protein synthesis and thermal tolerance. This result, when considered along with the directions of the latitudinal clines in protein synthesis and tolerance, suggests that variation in rates of heat-stimulated total protein synthesis is not a factor contributing to the latitudinal cline in heat tolerance. Given the robustness of this negative relationship we discuss possible explanations and future experiments to elucidate how the cellular heat stress response might facilitate increased knockdown tolerance.  相似文献   
87.
88.
cGMP- and cAMP-dependent protein kinases (cGK I, cGK II, and cAK) are important mediators of many signaling pathways that increase cyclic nucleotide concentrations and ultimately phosphorylation of substrates vital to cellular functions. Here we demonstrate a novel mRNA splice isoform of cGK II arising from alternative 5' splicing within exon 11. The novel splice variant encodes a protein (cGK II Delta(441-469)) lacking 29 amino acids of the cGK II Mg-ATP-binding/catalytic domain, including the conserved glycine-rich loop consensus motif Gly-x-Gly-x-x-Gly-x-Val which interacts with ATP in the protein kinase family of enzymes. cGK II Delta(441-469) has no intrinsic enzymatic activity itself, however, it antagonizes cGK II and cGK I, but not cAK. Thus, the activation and cellular functions of cGK II may be determined not only by intracellular cGMP levels but also by alternative splicing which may regulate the balance of expression of cGK II versus its own inhibitor, cGK II Delta(441-469).  相似文献   
89.
HemAT-Bs is a heme-based signal transducer protein responsible for aerotaxis. Time-resolved ultraviolet resonance Raman (UVRR) studies of wild-type and Y70F mutant of the full-length HemAT-Bs and the truncated sensor domain were performed to determine the site-specific protein dynamics following carbon monoxide (CO) photodissociation. The UVRR spectra indicated two phases of intensity changes for Trp, Tyr, and Phe bands of both full-length and sensor domain proteins. The W16 and W3 Raman bands of Trp, the F8a band of Phe, and the Y8a band of Tyr increased in intensity at hundreds of nanoseconds after CO photodissociation, and this was followed by recovery in ~50 μs. These changes were assigned to Trp-132 (G-helix), Tyr-70 (B-helix), and Phe-69 (B-helix) and/or Phe-137 (G-helix), suggesting that the change in the heme structure drives the displacement of B- and G-helices. The UVRR difference spectra of the sensor domain displayed a positive peak for amide I in hundreds of nanoseconds after photolysis, which was followed by recovery in ~50 μs. This difference band was absent in the spectra of the full-length protein, suggesting that the isolated sensor domain undergoes conformational changes of the protein backbone upon CO photolysis and that the changes are restrained by the signaling domain. The time-resolved difference spectrum at 200 μs exhibited a pattern similar to that of the static (reduced - CO) difference spectrum, although the peak intensities were much weaker. Thus, the rearrangements of the protein moiety toward the equilibrium ligand-free structure occur in a time range of hundreds of microseconds.  相似文献   
90.
Surface membrane proteins have a key role in the sequential interactions between spermatozoa and oocytes. The aim of this study was to characterize protein changes occurring during post-testicular differentiation using a new overall approach to study surface membrane proteins of spermatozoa. A dedicated protocol based on specific purification of surface membrane proteins labeled with sulfo-NHS-SS-biotin was developed for this purpose. Appropriate gel electrophoresis separation and purification methods combined with standard proteomic methods were then used to identify and quantify surface membrane proteins from immature and mature spermatozoa. Membrane-associated proteins were discriminated from integral membrane proteins by differential solubilization. Protein regionalization on the spermatozoon surface was achieved by comparative analysis of the surface protein extracts from the entire spermatozoa and from periacrosomal sperm plasma membranes. Identification of several known proteins and of new proteins related to the process of epididymal maturation showed the reliability of this protocol for specific purification of a subproteome and identification of new sperm membrane proteins. This approach opens up a new area in the search for male fertility markers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号