全文获取类型
收费全文 | 18281篇 |
免费 | 280篇 |
国内免费 | 223篇 |
专业分类
18784篇 |
出版年
2023年 | 58篇 |
2022年 | 140篇 |
2021年 | 163篇 |
2020年 | 123篇 |
2019年 | 182篇 |
2018年 | 235篇 |
2017年 | 140篇 |
2016年 | 162篇 |
2015年 | 505篇 |
2014年 | 1527篇 |
2013年 | 1396篇 |
2012年 | 1507篇 |
2011年 | 2141篇 |
2010年 | 1884篇 |
2009年 | 821篇 |
2008年 | 807篇 |
2007年 | 709篇 |
2006年 | 642篇 |
2005年 | 534篇 |
2004年 | 489篇 |
2003年 | 490篇 |
2002年 | 282篇 |
2001年 | 150篇 |
2000年 | 177篇 |
1999年 | 219篇 |
1998年 | 248篇 |
1997年 | 233篇 |
1996年 | 221篇 |
1995年 | 256篇 |
1994年 | 237篇 |
1993年 | 197篇 |
1992年 | 177篇 |
1991年 | 165篇 |
1990年 | 136篇 |
1989年 | 148篇 |
1988年 | 120篇 |
1987年 | 113篇 |
1986年 | 84篇 |
1985年 | 135篇 |
1984年 | 172篇 |
1983年 | 148篇 |
1982年 | 155篇 |
1981年 | 78篇 |
1980年 | 106篇 |
1979年 | 72篇 |
1978年 | 26篇 |
1977年 | 25篇 |
1976年 | 17篇 |
1973年 | 8篇 |
1972年 | 7篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Sinnett-Smith J Rozengurt N Kui R Huang C Rozengurt E 《The Journal of biological chemistry》2011,286(1):511-520
We examined whether protein kinase D1 (PKD1), the founding member of a new protein kinase family, plays a critical role in intestinal epithelial cell proliferation. Our results demonstrate that PKD1 activation is sustained, whereas that of PKD2 is transient in intestinal epithelial IEC-18 stimulated with the G(q)-coupled receptor agonists angiotensin II or vasopressin. PKD1 gene silencing utilizing small interfering RNAs dramatically reduced DNA synthesis and cell proliferation in IEC-18 cells stimulated with G(q)-coupled receptor agonists. To clarify the role of PKD1 in intestinal epithelial cell proliferation in vivo, we generated transgenic mice that express elevated PKD1 protein in the intestinal epithelium. Transgenic PKD1 exhibited constitutive catalytic activity and phosphorylation at the activation loop residues Ser(744) and Ser(748) and on the autophosphorylation site, Ser(916). To examine whether PKD1 expression stimulates intestinal cell proliferation, we determined the rate of crypt cell DNA synthesis by detection of 5-bromo-2-deoxyuridine incorporated into the nuclei of crypt cells of the ileum. Our results demonstrate a significant increase (p < 0.005) in DNA-synthesizing cells in the crypts of two independent lines of PKD1 transgenic mice as compared with non-transgenic littermates. Morphometric analysis showed a significant increase in the length and in the total number of cells per crypt in the transgenic PKD1 mice as compared with the non-transgenic littermates (p < 0.01). Thus, transgenic PKD1 signaling increases the number of cells per crypt by stimulating the rate of crypt cell proliferation. Collectively, our results indicate that PKD1 plays a role in promoting cell proliferation in intestinal epithelial cells both in vitro and in vivo. 相似文献
992.
993.
Hargrove TY Wawrzak Z Liu J Nes WD Waterman MR Lepesheva GI 《The Journal of biological chemistry》2011,286(30):26838-26848
Leishmaniasis is a major health problem that affects populations of ~90 countries worldwide, with no vaccine and only a few moderately effective drugs. Here we report the structure/function characterization of sterol 14α-demethylase (CYP51) from Leishmania infantum. The enzyme catalyzes removal of the 14α-methyl group from sterol precursors. The reaction is essential for membrane biogenesis and therefore has great potential to become a target for antileishmanial chemotherapy. Although L. infantum CYP51 prefers C4-monomethylated sterol substrates such as C4-norlanosterol and obtusifoliol (V(max) of ~10 and 8 min(-1), respectively), it is also found to 14α-demethylate C4-dimethylated lanosterol (V(max) = 0.9 min(-1)) and C4-desmethylated 14α-methylzymosterol (V(max) = 1.9 min(-1)). Binding parameters with six sterols were tested, with K(d) values ranging from 0.25 to 1.4 μM. Thus, L. infantum CYP51 is the first example of a plant-like sterol 14α-demethylase, where requirements toward the composition of the C4 atom substituents are not strict, indicative of possible branching in the postsqualene portion of sterol biosynthesis in the parasite. Comparative analysis of three CYP51 substrate binding cavities (Trypanosoma brucei, Trypanosoma cruzi, and L. infantum) suggests that substrate preferences of plant- and fungal-like protozoan CYP51s largely depend on the differences in the enzyme active site topology. These minor structural differences are also likely to underlie CYP51 catalytic rates and drug susceptibility and can be used to design potent and specific inhibitors. 相似文献
994.
Scortegagna M Subtil T Qi J Kim H Zhao W Gu W Kluger H Ronai ZA 《The Journal of biological chemistry》2011,286(31):27333-27341
The RING finger E3 ubiquitin ligase Siah2 is implicated in control of diverse cellular biological events, including MAPK signaling and hypoxia. Here we demonstrate that Siah2 is subject to regulation by the deubiquitinating enzyme USP13. Overexpression of USP13 increases Siah2 stability by attenuating its autodegradation. Consequently, the ability of Siah2 to target its substrates prolyl hydroxylase 3 and Spry2 (Sprouty2) for ubiquitin-mediated proteasomal degradation is attenuated. Conversely, inhibition of USP13 expression with corresponding shRNA decreases the stability of both Siah2 and its substrate Spry2. Thus, USP13 limits Siah2 autodegradation and its ubiquitin ligase activity against its target substrates. Strikingly, the effect of USP13 on Siah2 is not mediated by its isopeptidase activity: mutations in its ubiquitin-binding sequences positioned within the ubiquitin-specific processing protease and ubiquitin-binding domains, but not within putative catalytic sites, abolish USP13 binding to and effect on Siah2 autodegradation and targeted ubiquitination. Notably, USP13 expression is attenuated in melanoma cells maintained under hypoxia, thereby relieving Siah2 inhibition and increasing its activity under low oxygen levels. Significantly, on melanoma tissue microarray, high nuclear expression of USP13 coincided with high nuclear expression of Siah2. Overall, this study identifies a new layer of Siah2 regulation mediated by USP13 binding to ubiquitinated Siah2 protein with a concomitant inhibitory effect on its activity under normoxia. 相似文献
995.
Human ether-a-go-go-related gene product (HERG) is a cardiac potassium channel commonly implicated in the pathogenesis of the long QT syndrome, type 2 (LQT2). LQT2 mutations typically have incomplete penetrance and affect individuals at various stages of their lives; this may mirror variations in intracellular signaling and HERG regulation. Previous work showed that sustained protein kinase A (PKA) activity augments HERG protein abundance by a mechanism that includes enhanced protein translation. To investigate the subcellular site of this regulation, we generated site-specific probes to the cytoplasmic surface of the endoplasmic reticulum (ER), the presumed locale of channel synthesis. Real-time FRET-based indicators demonstrated both cAMP and PKA activity at the ER. A PKA inhibitor targeted to the ER surface (termed p4PKIg) completely abolished PKA-mediated augmentation of HERG in HEK293 cells as well as rat neonatal cardiomyocytes. Immunofluorescence co-localization, targeted FRET-based PKA biosensors, phospho-specific antibodies, and in vivo phosphorylation experiments confirmed that p4PKIg is preferentially active at the ER surface rather than the plasma membrane. Rerouting this inhibitor to the outer mitochondrial membrane diminishes its ability to block cAMP-dependent HERG induction. Our results support a model where PKA-dependent regulation of HERG synthesis occurs at the ER surface. Furthermore, reagents generated for this study provide novel experimental tools to probe compartmentalized cAMP/PKA signaling within cells. 相似文献
996.
Bosch DE Kimple AJ Sammond DW Muller RE Miley MJ Machius M Kuhlman B Willard FS Siderovski DP 《The Journal of biological chemistry》2011,286(5):3351-3358
GoLoco motif proteins bind to the inhibitory G(i) subclass of G-protein α subunits and slow the release of bound GDP; this interaction is considered critical to asymmetric cell division and neuro-epithelium and epithelial progenitor differentiation. To provide protein tools for interrogating the precise cellular role(s) of GoLoco motif/Gα(i) complexes, we have employed structure-based protein design strategies to predict gain-of-function mutations that increase GoLoco motif binding affinity. Here, we describe fluorescence polarization and isothermal titration calorimetry measurements showing three predicted Gα(i1) point mutations, E116L, Q147L, and E245L; each increases affinity for multiple GoLoco motifs. A component of this affinity enhancement results from a decreased rate of dissociation between the Gα mutants and GoLoco motifs. For Gα(i1)(Q147L), affinity enhancement was seen to be driven by favorable changes in binding enthalpy, despite reduced contributions from binding entropy. The crystal structure of Gα(i1)(Q147L) bound to the RGS14 GoLoco motif revealed disorder among three peptide residues surrounding a well defined Leu-147 side chain. Monte Carlo simulations of the peptide in this region showed a sampling of multiple backbone conformations in contrast to the wild-type complex. We conclude that mutation of Glu-147 to leucine creates a hydrophobic surface favorably buried upon GoLoco peptide binding, yet the hydrophobic Leu-147 also promotes flexibility among residues 511-513 of the RGS14 GoLoco peptide. 相似文献
997.
Nagashima K Shumway SD Sathyanarayanan S Chen AH Dolinski B Xu Y Keilhack H Nguyen T Wiznerowicz M Li L Lutterbach BA Chi A Paweletz C Allison T Yan Y Munshi SK Klippel A Kraus M Bobkova EV Deshmukh S Xu Z Mueller U Szewczak AA Pan BS Richon V Pollock R Blume-Jensen P Northrup A Andersen JN 《The Journal of biological chemistry》2011,286(8):6433-6448
Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitive kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems. 相似文献
998.
Universal Sharing Patterns in Proteomes and Evolution of Protein Fold Architecture and Life 总被引:5,自引:0,他引:5
Protein evolution is imprinted in both the sequence and the structure of evolutionary building blocks known as protein domains. These domains share a common ancestry and can be unified into a comparatively small set of folding architectures, the protein folds. We have traced the distribution of protein folds between and within proteomes belonging to Eukarya, Archaea, and Bacteria along the branches of a universal phylogeny of protein architecture. This tree was reconstructed from global fold-usage statistics derived from a structural census of proteomes. We found that folds shared by the three organismal domains were placed almost exclusively at the base of the rooted tree and that there were marked heterogeneities in fold distribution and clear evolutionary patterns related to protein architecture and organismal diversification. These include a relative timing for the emergence of prokaryotes, congruent episodes of architectural loss and diversification in Archaea and Bacteria, and a late and quite massive rise of architectural novelties in Eukarya perhaps linked to multicellularity.Reviewing Editor : Dr. David Pollock 相似文献
999.
1000.
Brandon J. Biesiadecki Kittipong Tachampa Chao Yuan Jian-Ping Jin Pieter P. de Tombe R. John Solaro 《The Journal of biological chemistry》2010,285(25):19688-19698
The cardiac troponin I (cTnI) isoform contains a unique N-terminal extension that functions to modulate activation of cardiac myofilaments. During cardiac remodeling restricted proteolysis of cTnI removes this cardiac specific N-terminal modulatory extension to alter myofilament regulation. We have demonstrated expression of the N-terminal-deleted cTnI (cTnI-ND) in the heart decreased the development of the cardiomyopathy like phenotype in a β-adrenergic-deficient transgenic mouse model. To investigate the potential beneficial effects of cTnI-ND on the development of naturally occurring cardiac dysfunction, we measured the hemodynamic and biochemical effects of cTnI-ND transgenic expression in the aged heart. Echocardiographic measurements demonstrate cTnI-ND transgenic mice exhibit increased systolic and diastolic functions at 16 months of age compared with age-matched controls. This improvement likely results from decreased Ca2+ sensitivity and increased cross-bridge kinetics as observed in skinned papillary bundles from young transgenic mice prior to the effects of aging. Hearts of cTnI-ND transgenic mice further exhibited decreased β myosin heavy chain expression compared to age matched non-transgenic mice as well as altered cTnI phosphorylation. Finally, we demonstrated cTnI-ND expressed in the heart is not phosphorylated indicating the cTnI N-terminal is necessary for the higher level phosphorylation of cTnI. Taken together, our data suggest the regulated proteolysis of cTnI during cardiac stress to remove the unique cardiac N-terminal extension functions to improve cardiac contractility at the myofilament level and improve overall cardiac function. 相似文献