首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24989篇
  免费   1833篇
  国内免费   1177篇
  27999篇
  2024年   101篇
  2023年   411篇
  2022年   503篇
  2021年   665篇
  2020年   575篇
  2019年   597篇
  2018年   561篇
  2017年   497篇
  2016年   462篇
  2015年   813篇
  2014年   1911篇
  2013年   1881篇
  2012年   1817篇
  2011年   2479篇
  2010年   2155篇
  2009年   1156篇
  2008年   1149篇
  2007年   1074篇
  2006年   951篇
  2005年   819篇
  2004年   732篇
  2003年   738篇
  2002年   477篇
  2001年   308篇
  2000年   310篇
  1999年   356篇
  1998年   359篇
  1997年   323篇
  1996年   318篇
  1995年   339篇
  1994年   318篇
  1993年   263篇
  1992年   242篇
  1991年   227篇
  1990年   179篇
  1989年   194篇
  1988年   158篇
  1987年   156篇
  1986年   115篇
  1985年   184篇
  1984年   212篇
  1983年   178篇
  1982年   201篇
  1981年   108篇
  1980年   129篇
  1979年   92篇
  1978年   53篇
  1977年   48篇
  1976年   33篇
  1973年   18篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
81.
Summary The lipophilicity (or hydrophobicity) of amino acids is an important property relevant for protein folding and therefore of great interest in protein engineering. For peptides or peptidomimetics of potential therapeutic interest, lipophilicity is related to absorption and distribution, and thus indirectly relates to their bioactivity. A rationalization of peptide lipophilicity requires basic knowledge of the lipophilicity of the constituting amino acids. In the present contribution we will review methods to measure or calculate the lipophilicities of amino acids, including unusual amino acids, and we will make a comparison between various lipophilicity scales.  相似文献   
82.
Conformationally constraining selectable peptides onto a suitable scaffold that enables their conformation to be predicted or readily determined by experimental techniques would considerably boost drug discovery process by reducing the gap between the discovery of a peptide lead and the design of a peptidomimetic with a more desirable pharmacological profile. With this in mind, we designed the minibody, a 61-residue β-protein aimed at retaining some desirable features of immunogloblin variable domains, such as tolerance to sequence variability in selected regions of the protein and predictability of main chain conformation of the same regions, based on the ‘canonical structures’ model. To test the ability of the minibody scaffold to support functional sites we also designed a metal binding version of the protein by suitably choosing the sequences of its loops. The minibody was produced both by chemical syntyhesis and expression in E. coli and charactgerized by size exclusion chromatography, UV CD (circular dichroism) spectroscopy and metal binding activity. All our data supported the model, but a more detailed structural characterization of the molecule was impaired by its low soubility. We were able to overcome this problem both by further; mutagenesis of the framework and by addition of a solublizing motif. The minibody is being used to select constrained human IL-6 peptidic ligands from a library displayed on the surface of the f1 bacteriophage.  相似文献   
83.
84.
A precondition for the chemotherapeutic treatment of a variety of virally-induced human diseases and malignant conditions is a highly selective interaction of the drug molecule to be used with it's biological target. To ensure the development of novel, effective drugs, it is essential that the biological target is well characterised with regard to it's structure and activity. Such characterisation relies upon adequate amounts of pure target being available. One of the most important enzymatic importers for antimetabolites is the enzyme thymidine kinase. In this article an in vitro protein expression system is described which facilitates the production of milligram amounts of pure and biologically active thymidine kinase, from a number of important biological sources. Results have shown that the in vitro produced enzyme has the exact biochemical propeties of the in vivo enzyme. Thus the in vitro protein expression system is an ideal vechicle to facilitate an in depth investigation of the enzyme's biological properties.  相似文献   
85.
We report on a novel chimeric gene that confers kanamycin resistance on tobacco plastids. The kan gene from the bacterial transposon Tn5, encoding neomycin phosphotransferase (NPTII), was placed under control of plastid expression signals and cloned between rbcL and ORF512 plastid gene sequences to target the insertion of the chimeric gene into the plastid genome. Transforming plasmid pTNH32 DNA was introduced into tobacco leaves by the biolistic procedure, and plastid transformants were selected by their resistance to 50 g/ml of kanamycin monosulfate. The regenerated plants uniformly transmitted the transplastome to the maternal progeny. Resistant clones resulting from incorporation of the chimeric gene into the nuclear genome were also obtained. However, most of these could be eliminated by screening for resistance to high levels of kanamycin (500 g/ml). Incorporation of kan into the plastid genome led to its amplification to a high copy number, about 10000 per leaf cell, and accumulation of NPTII to about 1% of total cellular protein.  相似文献   
86.
Native and chemically modified cytochrome C were dissolved in sodium bis(2-ethylhexyl) sulphosuccinate (AOT)-oil-buffer microemulsions. The native cytochrome C contains 19 lysine residues, these groups were modified by 1) acetic anhydride or 2) succinic anhydride. At pH 8.4 the native, acetylated and succinylated proteins carry +8, –3 and –12 elementary charges, respectively. The phase behaviour of the microemulsion systems was found to be highly dependent on the charge of the proteins. Compared to a protein free system the native protein induces a L-2 phase separation at lower temperatures. The acetylated protein has a small effect on the temperature for the phase transition, whereas in the case of succinylated cytochrome C the phase transition takes place at higher temperatures. When dissolved in AOT microemulsions, the native cytochrome C has a perturbed tertiary structure, as indicated by loss of the 695 nm absorption band, while both the modified proteins retain the same optical properties when dissolved in an AOT microemulsion as in a pure buffer solution. The pertubed structure of the native cytochrome C was further investigated by testing the stability of the reduced form of the protein dissolved in the microemulsion media. The native cytochrome is unstable at W > 10, whereas the two modified proteins were found to be stable at all W-values investigated. The average location of the three proteins was determined by pulse radiolysis. The quenching rate constant of the hydrated electron depends upon the location of the probe in the reverse micelle; the succinylated protein is localised in the aqueous core of the reverse micelles, but both the native and the acetylated forms were found to be localised close to or at the AOT interface.  相似文献   
87.
我们采用三硝基甲苯(TNT)与大鼠晶状体体外培养的方法,动态观察了晶状体中可溶性蛋白质、非蛋白质巯基、蛋白质巯基、蛋白质结合巯基及二硫键含量的变化,发现随着三硝基甲苯作用时间的延长,可溶性蛋白质、非蛋白质巯基及蛋白质巯基均减少,蛋白质结合巯基及二硫键交联的蛋白质含量增加,其中可溶性蛋白质、非蛋白质巯基及二硫键含量的变化皆达到了统计学上显著意义水平(P<0.05)。  相似文献   
88.
The principal sulfatide of virulentMycobacterium tuberculosis, sulfolipid-I (SL-I), both directly stimulates neutrophil superoxide (O 2 ) release and, at substimulatory concentrations, primes these cells for markedly enhanced oxidative responsiveness to other stimuli. The present study was undertaken to clarify the priming mechanisms by comparing cellular events following priming doses of SL-I with those following priming with N-formyl-methionyl-leucyl-phenylalanine (FMLP). We compared the involvement of the calcium cation (Ca2+), as well as membrane protein kinase C (PKC) activity and the translocation of NADPH oxidase-cytosolic cofactor effected by priming levels of the two agonists. The investigation led to two important conclusions. First, we clearly demonstrate that priming by both SL-I and FMLP results from activation of cellular processes that are not involved in direct oxidative activation. For example, whereas direct induction of O 2 generation by FMLP and SL-I required increases in intracellular Ca2+, an increase in intracellular calcium concentration ([Ca2+]i) above basal levels was not required for priming. Second, we identified key differences in the cellular responses to priming doses of SL-I and FMLP. Whereas increased membrane PKC activity caused by priming doses of FMLP was only partially blocked by chelation of intracellular Ca2+, Ca2+ chelation completely inhibited the increase in membrane PKC activity caused by SL-I. NADPH oxidase-cytosolic factor translocation to plasma membranes was completely blocked by pertussis toxin when priming doses of SL-I were used. This guanine-nucleotide-binding protein inhibitor had no effect on FMLP-dependent translocation of the oxidase cofactors. The comparative approach introduced in this report provides a valuable and novel method to discern the complex interactions of various cellular processes that regulate the state of activation of stimulated cells.  相似文献   
89.
Abstract: The phosphorylation of surface proteins by ectoprotein kinase has been proposed to play a role in mechanisms underlying neuronal differentiation and their responsiveness to nerve growth factor (NGF). PC 12 clones represent an optimal model for investigating the mode of action of NGF in a homogeneous cell population. In the present study we obtained evidence that PC12 cells possess ectoprotein kinase and characterized the endogenous phosphorylation of its surface protein substrates. PC12 cells maintained in a chemically defined medium exhibited phosphorylation of proteins by [γ-32P]ATP added to the medium at time points preceding the intracellular phosphorylation of proteins in cells labeled with 32Pi. This activity was abolished by adding apyrase or trypsin to the medium but was not sensitive to addition of an excess of unlabeled Pi. As also expected from ecto-protein kinase activity, PC12 cells catalyzed the phosphorylation of an exogenous protein substrate added to the medium, dephospho-α-casein, and this activity competed with the endogenous phosphorylation for extracellular ATP. Based on these criteria, three protein components migrating in sodium dodecyl sulfate gels with apparent molecular weights of 105K, 39K, and 20K were identified as exclusive substrates of ecto-protein kinase in PC12 cells. Of the phosphate incorporated into these proteins from extracellular ATP, 75–87% was found in phosphothreonine. The phosphorylation of the 39K protein by ecto-protein kinase did not require Mg2+, implicating this activity in the previously demonstrated regulation of Ca2+-dependent, high-affinity norepinephrine uptake in PC12 cells by extracellular ATP. The protein kinase inhibitor K-252a inhibited both intra- and extracellular protein phosphorylation in intact PC12 cells. Its hydrophilic analogue K-252b, had only minimal effects on intracellular protein phosphorylation but readily inhibited the phosphorylation of specific substrates of ecto-protein kinase in PC12 cells incubated with extracellular ATP, suggesting the involvement of ecto-protein kinase in the reported inhibition of NGF-induced neurite extension by K-252b. Preincubation of PC12 cells with 50 ng/ml of NGF for 5 min stimulated the activity of ecto-protein kinase toward all its endogenous substrates. Exposure of PC12 cells to the same NGF concentration for 3 days revealed another substrate of ecto-protein kinase, a 53K protein, whose surface phosphorylation is expressed only after NGF-induced neuronal differentiation. In the concentration range (10–100 μM) at which 6-thioguanine blocked NGF-promoted neurite outgrowth in PC12 cells, 6-thioguanine effectively inhibited the phosphorylation of specific proteins by ecto-protein kinase. This study provides the basis for continued investigation of the involvement of ecto-protein kinase and its surface protein substrates in neuronal differentiation, neuritogenesis, and synaptogenesis.  相似文献   
90.
Abstract: Prolactin (PRL) has been reported to activate cellular proliferation in nonreproductive tissue, such as liver, spleen, and thymus. Recently, we have extended the possible role of PRL as a mammalian mitogen by demonstrating a mitogenic effect of PRL in cultured astrocytes. Although the cellular mechanisms by which PRL regulates cell growth are not fully understood, protein kinase C (PKC) has been implicated as one of the transmembrane signaling systems involved in the regulation of PRL-induced cell proliferation in Nb2 lymphoma cells and liver. In the present studies, we examined the possible role of PKC in PRL-induced proliferation of cultured astrocytes. Incubation of cultured astrocytes with 1 nM PRL resulted in a rapid translocation of PKC from the cytosol to the membrane, with maximal PKC activity in the membrane occurring 30 min after exposure to PRL. Translocation of PKC activity occurred over a physiological range of PRL, with maximal PKC activation occurring at 1 nM. At concentrations greater than 10 nM PRL, there was a decrease in the amount of PKC activity associated with the membrane fraction compared with that of cells stimulated with 1 nM PRL. Incubation of astrocytes with PRL in the presence of the PKC inhibitors staurosporine, 1-(-5-isoquinolinesulfonyl)-2-methylpiperazine, or polymyxin B blocked the PRL-induced increase in cell number with IC50 values of approximately 2 nM, 10 μM, and 6 μM, respectively. PKC is the only known cellular receptor for 12-O-tetradecanoylphorbol 13-acetate (TPA), which stimulates the translocation of PKC from the cytosol to the membrane. Incubation of astrocytes with 20 nM TPA resulted in an increase in the expression of proliferating cell nuclear antigen and cell number, whereas 4α-phorbol 12,13-didecanoate, an inactive phorbol ester, was ineffective. To examine further the effect of TPA and PRL on cellular proliferation, cultured astrocytes were incubated with increasing concentrations of TPA in the presence or absence of a minimal effective dose of PRL (100 pM). In the absence of PRL, incubation with TPA resulted in an inverted U-shaped dose-response curve, with 100 nM TPA resulting in a maximal increase in cell number. In the presence of 100 pM PRL, the TPA dose-response curve was shifted to the left, with maximal activity occurring with 10 nM TPA. Chronic stimulation of astrocytes with 500 nM TPA depleted the cells of PKC and blocked the PRL-induced increase in cell number. Finally, TPA treatment decreased cell-surface binding of 125I-PRL. These data indicate that the PKC is involved in the mitogenic effect of PRL in cultured astrocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号