全文获取类型
收费全文 | 21976篇 |
免费 | 498篇 |
国内免费 | 875篇 |
专业分类
23349篇 |
出版年
2023年 | 112篇 |
2022年 | 266篇 |
2021年 | 267篇 |
2020年 | 257篇 |
2019年 | 307篇 |
2018年 | 340篇 |
2017年 | 274篇 |
2016年 | 304篇 |
2015年 | 620篇 |
2014年 | 1678篇 |
2013年 | 1733篇 |
2012年 | 1647篇 |
2011年 | 2375篇 |
2010年 | 2042篇 |
2009年 | 1097篇 |
2008年 | 1032篇 |
2007年 | 907篇 |
2006年 | 819篇 |
2005年 | 709篇 |
2004年 | 649篇 |
2003年 | 647篇 |
2002年 | 427篇 |
2001年 | 277篇 |
2000年 | 275篇 |
1999年 | 315篇 |
1998年 | 328篇 |
1997年 | 289篇 |
1996年 | 272篇 |
1995年 | 332篇 |
1994年 | 313篇 |
1993年 | 247篇 |
1992年 | 235篇 |
1991年 | 224篇 |
1990年 | 155篇 |
1989年 | 161篇 |
1988年 | 128篇 |
1987年 | 125篇 |
1986年 | 97篇 |
1985年 | 167篇 |
1984年 | 197篇 |
1983年 | 157篇 |
1982年 | 163篇 |
1981年 | 79篇 |
1980年 | 110篇 |
1979年 | 80篇 |
1978年 | 28篇 |
1977年 | 26篇 |
1976年 | 19篇 |
1974年 | 8篇 |
1973年 | 10篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
111.
Tzong-Yuan Lin Tobias Werther Jae-Hun Jeoung Holger Dobbek 《The Journal of biological chemistry》2012,287(45):38338-38346
The three-component toluene dioxygenase system consists of an FAD-containing reductase, a Rieske-type [2Fe-2S] ferredoxin, and a Rieske-type dioxygenase. The task of the FAD-containing reductase is to shuttle electrons from NADH to the ferredoxin, a reaction the enzyme has to catalyze in the presence of dioxygen. We investigated the kinetics of the reductase in the reductive and oxidative half-reaction and detected a stable charge transfer complex between the reduced reductase and NAD+ at the end of the reductive half-reaction, which is substantially less reactive toward dioxygen than the reduced reductase in the absence of NAD+. A plausible reason for the low reactivity toward dioxygen is revealed by the crystal structure of the complex between NAD+ and reduced reductase, which shows that the nicotinamide ring and the protein matrix shield the reactive C4a position of the isoalloxazine ring and force the tricycle into an atypical planar conformation, both factors disfavoring the reaction of the reduced flavin with dioxygen. A rapid electron transfer from the charge transfer complex to electron acceptors further reduces the risk of unwanted side reactions, and the crystal structure of a complex between the reductase and its cognate ferredoxin shows a short distance between the electron-donating and -accepting cofactors. Attraction between the two proteins is likely mediated by opposite charges at one large patch of the complex interface. The stability, specificity, and reactivity of the observed charge transfer and electron transfer complexes are thought to prevent the reaction of reductaseTOL with dioxygen and thus present a solution toward conflicting requirements. 相似文献
112.
Abstract: One-trial conditioning of the nudibranch mollusk Hermissenda produces short- and long-term changes in excitability (enhancement) of identified sensory neurons. To investigate the biochemical mechanisms underlying this example of plasticity, we have examined changes in protein phosphorylation at different times following the in vitro conditioning trial. Changes in the incorporation of 32 PO4 into proteins were determined using two-dimensional polyacrylamide gel electrophoresis, autoradiography, and densitometry. Conditioning resulted in increases in levels of several phosphoproteins, five of which, ranging in apparent molecular mass from 22 to 55 kDa, were chosen for analysis. The increased phosphorylation of the 46- and 55-kDa phosphoproteins detected 2 h postconditioning was significantly greater than the level of phosphorylation detected in an unpaired control group, indicating that long-term enhancement is pairing specific. Statistically significant increases in phosphorylation as compared with the control group that received only light were detected immediately after conditioning (5 min) for the 55-, 46-, and 22-kDa phosphoproteins, at 1 h for the 55- and 46-kDa phosphoproteins, and at 2 h for the 55-, 46-, and 22-kDa phosphoproteins. The 46- and 55-kDa phosphoproteins are putative structural proteins, and the 22-kDa phosphoprotein is proposed to be a protein kinase C substrate previously identified in Hermissenda following multitrial classical conditioning. Time-dependent increases in protein phosphorylation may contribute to the induction and maintenance of different memory stages expressed in sensory neurons after one-trial conditioning. 相似文献
113.
Amy E. Howard Jaime C. Fox Kevin C. Slep 《The Journal of biological chemistry》2015,290(16):10149-10162
Microtubule-associated proteins regulate microtubule (MT) dynamics spatially and temporally, which is essential for proper formation of the bipolar mitotic spindle. The XMAP215 family is comprised of conserved microtubule-associated proteins that use an array of tubulin-binding tumor overexpressed gene (TOG) domains, consisting of six (A–F) Huntingtin, elongation factor 3, protein phosphatase 2A, target of rapamycin (HEAT) repeats, to robustly increase MT plus-end polymerization rates. Recent work showed that TOG domains have differentially conserved architectures across the array, with implications for position-dependent TOG domain tubulin binding activities and function within the XMAP215 MT polymerization mechanism. Although TOG domains 1, 2, and 4 are well described, structural and mechanistic information characterizing TOG domains 3 and 5 is outstanding. Here, we present the structure and characterization of Drosophila melanogaster Mini spindles (Msps) TOG3. Msps TOG3 has two unique features as follows: the first is a C-terminal tail that stabilizes the ultimate four HEAT repeats (HRs), and the second is a unique architecture in HR B. Structural alignments of TOG3 with other TOG domain structures show that the architecture of TOG3 is most similar to TOG domains 1 and 2 and diverges from TOG4. Docking TOG3 onto recently solved Stu2 TOG1· and TOG2·tubulin complex structures suggests that TOG3 uses similarly conserved tubulin-binding intra-HEAT loop residues to engage α- and β-tubulin. This indicates that TOG3 has maintained a TOG1- and TOG2-like TOG-tubulin binding mode despite structural divergence. The similarity of TOG domains 1–3 and the divergence of TOG4 suggest that a TOG domain array with polarized structural diversity may play a key mechanistic role in XMAP215-dependent MT polymerization activity. 相似文献
114.
Rat liver casein kinase TS (Ck-TS) having quarternary structure α2β2, autophosphorylates at its 25 kDa, β-subunits, incorporating up to 1.2 mol P/mol enzyme. According to their effects on the autophosphorylation pattern the effectors of Ck-TS activity can be grouped into 3 classes: (i) inhibitors, like heparin, which also prevent the autophosphorylation of the β-subunit; (ii) stimulators possessing several amino groups (like spermine) which increase the autophosphorylation at the β-subunit; (iii) stimulators possessing several guanido groups, like protamines and related peptides, which prevent the phosphorylation of the β-subunit, while promoting the autophosphorylation of the 38 kDa α-subunit. In the presence of such polyarginyl effectors the 130 kDa Ck-TS is converted into forms with higher sedimentation coefficient. 相似文献
115.
116.
Julio A. Camarero Youngeun Kwon 《International journal of peptide research and therapeutics》2008,14(4):351-357
Many experimental approaches in biology and biophysics, as well as applications in diagnosis and drug discovery, require proteins
to be immobilized on solid supports. Protein microarrays, for example, provide a high-throughput format to study biomolecular
interactions. The technique employed for protein immobilization is a key to the success of these applications. Recent biochemical
developments are allowing, for the first time, the selective and traceless immobilization of proteins generated by cell-free
systems without the need for purification and/or reconcentration prior to the immobilization step. 相似文献
117.
Randy W. Larsen Jinsheng Yang Shaobin Hou Michael K. Helms David M. Jameson Maqsudul Alam 《Journal of Protein Chemistry》1999,18(3):269-275
In the present study, structural aspects of the two soluble transducers, HtrX and HtrXI, from the archaeon H. salinarum have been examined using UV circular dichroism and steady-state fluorescence spectroscopies. Circular dichroism (CD) data indicate that both HtrX and HtrXI exhibit salt-dependent protein folding. Under low-ionic-strength conditions (0.2 M NaCl or KCl) the CD spectra of HtrXI is similar to that of the Gdn-HCl- or urea-denatured forms and is indicative of random coil structure. In contrast, the CD spectrum of HtrX under low-ionic-strength conditions contains roughly 85% -helical character, indicating a significant degree of folding. Addition of NaCl or KCl to solutions of HtrX or HtrXI results in CD features consistent with predominately -helical character (>95%) for both proteins. In addition, the transition points (i.e., ionic strengths at which the protein converts from random coil to -helical character) are quite distinct and dependent upon the type of salt present (i.e., either NaCl or KCl). Accessibility of tryptophan residues to the solvent was also examined for both HtrX and HtrXI in both folded and unfolded states using Kl quenching. The Stern–Volmer constants obtained suggest that the tryptophans (Trp35 in HtrX and both Trp47 and Trp74 in HtrXI) are partially exposed to the solvent, indicating that they are located near the surface of the protein in all three cases. Furthermore, fluorescence quenching with the single Trp mutants Trp74AIa and Trp47AIa of HtrXI indicates different environments for these two residues. 相似文献
118.
We have previously characterized the biogenesis of the human CD8α protein expressed in rat epithelial cells. We now describe the biosynthesis, post-translational maturation and hetero-oligomeric assembly of the human CD8α/p56lck protein complex in stable transfectants obtained from the same cell line. There were no differences in the myristilation of p56lck, or in the dimerization, O-glycosylation and transport to the plasma membrane of CD8α, between cells expressing either one or both proteins. In the doubly expressing cells, dimeric forms of CD8α established hetero-oligomeric complexes with p56lck, as revealed by co-immunoprecipitation assays performed with anti-CD8α antibody. Moreover, p56lck bound in these hetero-oligomeric complexes was endowed with auto- and hetero-phosphorylating activity. The present study shows that: (1) the newly synthesized p56lck binds rapidly to CD8α and most of the p56lck is bound to CD8α at steady state; (2) CD8α/p56lck protein complexes are formed at internal membranes as well as at the plasma membrane; and (3) about 50% of complexed p56lck reaches the cell surface. 相似文献
119.
Thioredoxin motif of Caenorhabditis elegans PDI-3 provides Cys and His catalytic residues for transglutaminase activity 总被引:1,自引:0,他引:1
Previous reports have suggested that protein disulfide isomerases (PDIs) have transglutaminase (TGase) activity. The structural basis of this reaction has not been revealed. We demonstrate here that Caenorhabditis elegans PDI-3 can function as a Ca(2+)-dependent TGase in assays based on modification of protein- and peptide-bound glutamine residues. By site-directed mutagenesis the second cysteine residue of the -CysGlyHisCys- motif in the thioredoxin domain of the enzyme protein was found to be the active site of the transamidation reaction and chemical modification of histidine in their motif blocked TGase activity. 相似文献
120.
Audrey N. Chang Guohua Chen Robert D. Gerard Kristine E. Kamm James T. Stull 《The Journal of biological chemistry》2010,285(8):5122-5126
Zipper-interacting protein kinase (ZIPK) is a member of the death-associated protein kinase family associated with apoptosis in nonmuscle cells where it phosphorylates myosin regulatory light chain (RLC) to promote membrane blebbing. ZIPK mRNA and protein are abundant in heart tissue and isolated ventricular neonatal rat cardiac myocytes. An unbiased substrate search performed with purified ZIPK on heart homogenates led to the discovery of a prominent 20-kDa protein substrate identified as RLC of ventricular myosin. Biochemical analyses showed ZIPK phosphorylated cardiac RLC at Ser-15 with a Vmax value 2-fold greater than the value for smooth/nonmuscle RLC; cardiac RLC is a favorable biochemical substrate. Knockdown of ZIPK in cardiac myocytes by small interfering RNA significantly decreased the extent of RLC Ser-15 phosphorylation. Thus, ZIPK may act as a cardiac RLC kinase and thereby affect contractility. 相似文献