全文获取类型
收费全文 | 19629篇 |
免费 | 380篇 |
国内免费 | 272篇 |
专业分类
20281篇 |
出版年
2023年 | 73篇 |
2022年 | 178篇 |
2021年 | 207篇 |
2020年 | 160篇 |
2019年 | 227篇 |
2018年 | 295篇 |
2017年 | 172篇 |
2016年 | 194篇 |
2015年 | 563篇 |
2014年 | 1623篇 |
2013年 | 1521篇 |
2012年 | 1573篇 |
2011年 | 2217篇 |
2010年 | 1937篇 |
2009年 | 884篇 |
2008年 | 870篇 |
2007年 | 780篇 |
2006年 | 697篇 |
2005年 | 576篇 |
2004年 | 530篇 |
2003年 | 550篇 |
2002年 | 318篇 |
2001年 | 175篇 |
2000年 | 193篇 |
1999年 | 240篇 |
1998年 | 265篇 |
1997年 | 247篇 |
1996年 | 242篇 |
1995年 | 262篇 |
1994年 | 260篇 |
1993年 | 208篇 |
1992年 | 194篇 |
1991年 | 174篇 |
1990年 | 146篇 |
1989年 | 151篇 |
1988年 | 126篇 |
1987年 | 120篇 |
1986年 | 89篇 |
1985年 | 146篇 |
1984年 | 184篇 |
1983年 | 158篇 |
1982年 | 160篇 |
1981年 | 86篇 |
1980年 | 110篇 |
1979年 | 78篇 |
1978年 | 31篇 |
1977年 | 27篇 |
1976年 | 19篇 |
1974年 | 11篇 |
1973年 | 11篇 |
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
So CH Michal AM Mashayekhi R Benovic JL 《The Journal of biological chemistry》2012,287(21):17088-17099
G protein-coupled receptor kinases (GRKs) phosphorylate activated G protein-coupled receptors, leading to their desensitization and endocytosis. GRKs have also been implicated in phosphorylating other classes of proteins and can localize in a variety of cellular compartments, including the nucleus. Here, we attempted to identify potential nuclear substrates for GRK5. Our studies reveal that GRK5 is able to interact with and phosphorylate nucleophosmin (NPM1) both in vitro and in intact cells. NPM1 is a nuclear protein that regulates a variety of cell functions including centrosomal duplication, cell cycle control, and apoptosis. GRK5 interaction with NPM1 is mediated by the N-terminal domain of each protein, and GRK5 primarily phosphorylates NPM1 at Ser-4, a site shared with polo-like kinase 1 (PLK1). NPM1 phosphorylation by GRK5 and PLK1 correlates with the sensitivity of cells to undergo apoptosis with cells having higher GRK5 levels being less sensitive and cells with lower GRK5 being more sensitive to PLK1 inhibitor-induced apoptosis. Taken together, our results demonstrate that GRK5 phosphorylates Ser-4 in nucleophosmin and regulates the sensitivity of cells to PLK1 inhibition. 相似文献
992.
MARCH E3 ligases play a key role in controlling MHC class II surface expression by regulated ubiquitination of a lysine residue in the β-chain. Little is known concerning how these enzymes target their specific substrates. Here we show that recognition of HLA-DR by MARCH proteins is complex. Several features associated with the transmembrane domain and bordering regions influence the overall efficiency of receptor internalization. A cluster of residues at the interface of the lipid bilayer and the cytosol plays the most important role in MARCH8 recognition of HLA-DRβ. Variation in this sequence also determines specificity of MARCH9 for HLA-DQ. Residues located in helical face four of HLA-DRβ together with a charged residue at the boundary with the stalk region also contribute significantly to recognition. Truncation analysis suggested that a dileucine-like motif in the DRβ cytoplasmic tail influences the efficiency of co-localization of HLA-DR with MARCH8. The DRβ-encoded acceptor lysine functioned optimally when placed in its natural location relative to the bilayer. In the DRα/DRβ dimer most other amino acids in the cytoplasmic tail could be substituted for alanine with minimal influence on function. Our data support a model whereby multiple features of HLA-DR are involved in substrate recognition by MARCH8. The single most important region is located at the interface between the transmembrane domain and the cytosol. Variation in sequence in this location between different class II isotypes controls efficiency of recognition by different MARCH E3 ligases. 相似文献
993.
Agonist stimulation of G protein-coupled receptors (GPCRs) can transactivate epidermal growth factor receptors (EGFRs), but the precise mechanisms for this transactivation have not been defined. Key to this process is the protease-mediated “shedding” of membrane-tethered ligands, which then activate EGFRs. The specific proteases and the events involved in GPCR-EGFR transactivation are not fully understood. We have tested the hypothesis that transactivation can occur by a membrane-delimited process: direct increase in the activity of membrane type-1 matrix metalloprotease (MMP14, MT1-MMP) by heterotrimeric G proteins, and in turn, the generation of heparin-binding epidermal growth factor (HB-EGF) and activation of EGFR. Using membranes prepared from adult rat cardiac myocytes and fibroblasts, we found that MMP14 activity is increased by angiotensin II, phenylephrine, GTP, and guanosine 5′-O-[γ-thio]triphosphate (GTPγS). MMP14 activation by GTPγS occurs in a concentration- and time-dependent manner, does not occur in response to GMP or adenosine 5′-[γ-thio]triphosphate (ATPγS), and is not blunted by inhibitors of Src, PKC, phospholipase C (PLC), PI3K, or soluble MMPs. This activation is specific to MMP14 as it is inhibited by a specific MMP14 peptide inhibitor and siRNA knockdown. MMP14 activation by GTPγS is pertussis toxin-sensitive. A role for heterotrimeric G protein βγ subunits was shown by using the Gβγ inhibitor gallein and the direct activation of recombinant MMP14 by purified βγ subunits. GTPγS-stimulated activation of MMP14 also results in membrane release of HB-EGF and the activation of EGFR. These results define a previously unrecognized, membrane-delimited mechanism for EGFR transactivation via direct G protein activation of MMP14 and identify MMP14 as a heterotrimeric G protein-regulated effector. 相似文献
994.
Predictions of matrix‐assisted refolding of α‐lactalbumin: Process efficiency versus batch dilution method 下载免费PDF全文
Protein refolding is an important technique to produce active recombinant proteins from inclusion bodies. Because of the complexity of the refolding process, a trial‐and‐error method is usually used for its design, which is ineffective and time consuming. Therefore, an efficient method for the process prediction is indispensable to optimize the operating conditions. In this article, we suggest a design procedure for matrix‐assisted protein refolding. Three different chromatographic techniques were considered exploiting hydrophobic interaction chromatography, ion‐exchange chromatography, and SEC media. The procedure consisted of quantification of refolding kinetics, analysis of the retention behavior of all protein forms involved in refolding, construction of a dynamic model, and the process simulation. Denatured bovine α‐lactalbumin was used as model protein. The refolding rate was measured for different protein concentration using the batch dilution method. A kinetic scheme for the protein refolding was suggested and incorporated into a dynamic model of chromatographic column and used for predicting the refolding performance. The productivity, yield, and buffer consumption were used as performance indicators for the refolding techniques considered. The matrix‐assisted protein refolding process outperformed batch dilution method with respect to all indicators provided that efficient method for the process design was used. 相似文献
995.
Protein disulfide isomerase (PDI) family proteins are classified as enzymatic chaperones for reconstructing misfolded proteins. Previous studies have shown that several PDI members possess potential proapoptotic functions. However, the detailed molecular mechanisms of PDI-mediated apoptosis are not completely known. In this study, we investigated how two members of PDI family, PDI and PDIA3, modulate apoptotic signaling. Inhibiting PDI and PDIA3 activities pharmacologically alleviates apoptosis induced by various apoptotic stimuli. Although a decrease of PDIA3 expression alleviates apoptotic responses, overexpression of PDIA3 exacerbates apoptotic signaling. Importantly, Bak, but not Bax, is essential for PDIA3-induced proapoptotic signaling. Furthermore, both purified PDI and PDIA3 proteins induce Bak-dependent, but not Bax-dependent, mitochondrial outer membrane permeabilization in vitro, probably through triggering Bak oligomerization on mitochondria. Our results suggest that both of PDI and PDIA3 possess Bak-dependent proapoptotic function through inducing mitochondrial outer membrane permeabilization, which provides a new mechanism linking ER chaperone proteins and apoptotic signaling. 相似文献
996.
Ruizhi Wang Hongjie Wang Ivan Carrera Shaohua Xu Madepalli K. Lakshmana 《The Journal of biological chemistry》2015,290(14):9299-9309
Brain accumulation of neurotoxic amyloid β (Aβ) peptide because of increased processing of amyloid precursor protein (APP), resulting in loss of synapses and neurodegeneration, is central to the pathogenesis of Alzheimer disease (AD). Therefore, the identification of molecules that regulate Aβ generation and those that cause synaptic damage is crucial for future therapeutic approaches for AD. We demonstrated previously that COPS5 regulates Aβ generation in neuronal cell lines in a RanBP9-dependent manner. Consistent with the data from cell lines, even by 6 months, COPS5 overexpression in APΔE9 mice (APΔE9/COPS5-Tg) significantly increased Aβ40 levels by 32% (p < 0.01) in the cortex and by 28% (p < 0.01) in the hippocampus, whereas the increases for Aβ42 were 37% (p < 0.05) and 34% (p < 0.05), respectively. By 12 months, the increase was even more robust. Aβ40 levels increased by 63% (p < 0.001) in the cortex and by 65% (p < 0.001) in the hippocampus. Similarly, Aβ42 levels were increased by 69% (p < 0.001) in the cortex and by 71% (p < 0.011) in the hippocampus. Increased Aβ levels were translated into an increased amyloid plaque burden both in the cortex (54%, p < 0.01) and hippocampus (64%, p < 0.01). Interestingly, COPS5 overexpression increased RanBP9 levels in the brain, which, in turn, led to increased amyloidogenic processing of APP, as reflected by increased levels of sAPPβ and decreased levels of sAPPα. Furthermore, COPS5 overexpression reduced spinophilin in both the cortex (19%, p < 0.05) and the hippocampus (20%, p < 0.05), leading to significant deficits in learning and memory skills. Therefore, like RanBP9, COPS5 also plays a pivotal role in amyloid pathology in vivo. 相似文献
997.
COMT polymorphism modulates the resting‐state EEG alpha oscillatory response to acute nicotine in male non‐smokers 下载免费PDF全文
H. Bowers D. Smith S. de la Salle J. Choueiry D. Impey T. Philippe H. Dort A. Millar M. Daigle P. R. Albert A. Beaudoin V. Knott 《Genes, Brain & Behavior》2015,14(6):466-476
Performance improvements in cognitive tasks requiring executive functions are evident with nicotinic acetylcholine receptor (nAChR) agonists, and activation of the underlying neural circuitry supporting these cognitive effects is thought to involve dopamine neurotransmission. As individual difference in response to nicotine may be related to a functional polymorphism in the gene encoding catechol‐O‐methyltransferase (COMT), an enzyme that strongly influences cortical dopamine metabolism, this study examined the modulatory effects of the COMT Val158Met polymorphism on the neural response to acute nicotine as measured with resting‐state electroencephalographic (EEG) oscillations. In a sample of 62 healthy non‐smoking adult males, a single dose (6 mg) of nicotine gum administered in a randomized, double‐blind, placebo‐controlled design was shown to affect α oscillatory activity, increasing power of upper α oscillations in frontocentral regions of Met/Met homozygotes and in parietal/occipital regions of Val/Met heterozygotes. Peak α frequency was also found to be faster with nicotine (vs. placebo) treatment in Val/Met heterozygotes, who exhibited a slower α frequency compared to Val/Val homozygotes. The data tentatively suggest that interindividual differences in brain α oscillations and their response to nicotinic agonist treatment are influenced by genetic mechanisms involving COMT. 相似文献
998.
Ahsan Mushir Shemsi Firdous Ahmad Khanday Ahsanulhaq Qurashi Amjad Khalil Gea Guerriero Khawar Sohail Siddiqui 《Biotechnology advances》2019,37(3):357-381
Numerous enzymes of biotechnological importance have been immobilized on magnetic nanoparticles (MNP) via random multipoint attachment, resulting in a heterogeneous protein population with potential reduction in activity due to restriction of substrate access to the active site. Several chemistries are now available, where the modifier can be linked to a single specific amino acid in a protein molecule away from the active-site, thus enabling free access of the substrate. However, rarely these site-selective approaches have been applied to immobilize enzymes on nanoparticles. In this review, for the first time, we illustrate how to adapt site-directed chemical modification (SDCM) methods for immobilizing enzymes on iron-based MNP. These strategies are mainly chemical but may additionally require genetic and enzymatic methods. We critically examine each method and evaluate their scope for simple, quick, efficient, mild and economical immobilization of enzymes on MNP. The improvements in the catalytic properties of few available examples of immobilized enzymes are also discussed. We conclude the review with the applications and future prospects of site-selectively modified magnetic enzymes and potential benefits of this technology in improving enzymes, including cold-adapted homologues, modular enzymes, and CO2-sequestering, as well as non-iron based nanomaterials. 相似文献
999.
1000.
Takahata Y Takarada T Hinoi E Nakamura Y Fujita H Yoneda Y 《The Journal of biological chemistry》2011,286(38):32906-32917
The prevailing view is that signaling machineries for the neurotransmitter GABA are also expressed by cells outside the CNS. In cultured murine calvarial osteoblasts, mRNA was constitutively expressed for both subunits 1 and 2 of metabotropic GABA(B) receptor (GABA(B)R), along with inhibition by the GABA(B)R agonist baclofen of cAMP formation, alkaline phosphatase (ALP) activity, and Ca(2+) accumulation. Moreover, baclofen significantly inhibited the transactivation of receptor activator of nuclear factor-κB ligand (RANKL) gene in a manner sensitive to a GABA(B)R antagonist, in addition to decreasing mRNA expression of bone morphogenetic protein-2 (BMP2), osteocalcin, and osterix. In osteoblastic MC3T3-E1 cells stably transfected with GABA(B)R1 subunit, significant reductions were seen in ALP activity and Ca(2+) accumulation, as well as mRNA expression of osteocalcin, osteopontin, and osterix. In cultured calvarial osteoblasts from GABA(B)R1-null mice exhibiting low bone mineral density in tibia and femur, by contrast, both ALP activity and Ca(2+) accumulation were significantly increased together with promoted expression of both mRNA and proteins for BMP2 and osterix. No significant change was seen in the number of multinucleated cells stained for tartrate-resistant acid phosphatase during the culture of osteoclasts prepared from GABA(B)R1-null mice, whereas a significant increase was seen in the number of tartrate-resistant acid phosphatase-positive multinucleated cells in co-culture of osteoclasts with osteoblasts isolated from GABA(B)R1-null mice. These results suggest that GABA(B)R is predominantly expressed by osteoblasts to negatively regulate osteoblastogenesis through down-regulation of BMP2 expression toward disturbance of osteoclastogenesis after down-regulation of RANKL expression in mouse bone. 相似文献