首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19239篇
  免费   300篇
  国内免费   275篇
  19814篇
  2023年   63篇
  2022年   148篇
  2021年   181篇
  2020年   134篇
  2019年   200篇
  2018年   255篇
  2017年   155篇
  2016年   172篇
  2015年   559篇
  2014年   1632篇
  2013年   1474篇
  2012年   1597篇
  2011年   2244篇
  2010年   1960篇
  2009年   850篇
  2008年   844篇
  2007年   754篇
  2006年   671篇
  2005年   573篇
  2004年   510篇
  2003年   513篇
  2002年   301篇
  2001年   162篇
  2000年   194篇
  1999年   231篇
  1998年   254篇
  1997年   242篇
  1996年   231篇
  1995年   265篇
  1994年   241篇
  1993年   208篇
  1992年   180篇
  1991年   171篇
  1990年   140篇
  1989年   155篇
  1988年   122篇
  1987年   117篇
  1986年   85篇
  1985年   148篇
  1984年   179篇
  1983年   154篇
  1982年   160篇
  1981年   80篇
  1980年   112篇
  1979年   74篇
  1978年   30篇
  1977年   27篇
  1976年   17篇
  1973年   9篇
  1972年   8篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
101.
The anaphase-promoting complex or cyclosome (APC/C) is a large E3 RING-cullin ubiquitin ligase composed of between 14 and 15 individual proteins. A striking feature of the APC/C is that only four proteins are involved in directly recognizing target proteins and catalyzing the assembly of a polyubiquitin chain. All other subunits, which account for > 80% of the mass of the APC/C, provide scaffolding functions. A major proportion of these scaffolding subunits are structurally related. In metazoans, there are four canonical tetratricopeptide repeat (TPR) proteins that form homo-dimers (Apc3/Cdc27, Apc6/Cdc16, Apc7 and Apc8/Cdc23). Here, we describe the crystal structure of the N-terminal homo-dimerization domain of Schizosaccharomyces pombe Cdc23 (Cdc23Nterm). Cdc23Nterm is composed of seven contiguous TPR motifs that self-associate through a related mechanism to those of Cdc16 and Cdc27. Using the Cdc23Nterm structure, we generated a model of full-length Cdc23. The resultant “V”-shaped molecule docks into the Cdc23-assigned density of the human APC/C structure determined using negative stain electron microscopy (EM). Based on sequence conservation, we propose that Apc7 forms a homo-dimeric structure equivalent to those of Cdc16, Cdc23 and Cdc27. The model is consistent with the Apc7-assigned density of the human APC/C EM structure. The four canonical homo-dimeric TPR proteins of human APC/C stack in parallel on one side of the complex. Remarkably, the uniform relative packing of neighboring TPR proteins generates a novel left-handed suprahelical TPR assembly. This finding has implications for understanding the assembly of other TPR-containing multimeric complexes.  相似文献   
102.
Halophilic archaea accumulate molar concentrations of KCl in their cytoplasm as an osmoprotectant and have evolved highly acidic proteomes that function only at high salinity. We examined osmoprotection in the photosynthetic Proteobacteria Halorhodospira halophila and Halorhodospira halochloris. Genome sequencing and isoelectric focusing gel electrophoresis showed that the proteome of H. halophila is acidic. In line with this finding, H. halophila accumulated molar concentrations of KCl when grown in high salt medium as detected by x-ray microanalysis and plasma emission spectrometry. This result extends the taxonomic range of organisms using KCl as a main osmoprotectant to the Proteobacteria. The closely related organism H. halochloris does not exhibit an acidic proteome, matching its inability to accumulate K+. This observation indicates recent evolutionary changes in the osmoprotection strategy of these organisms. Upon growth of H. halophila in low salt medium, its cytoplasmic K+ content matches that of Escherichia coli, revealing an acidic proteome that can function in the absence of high cytoplasmic salt concentrations. These findings necessitate a reassessment of two central aspects of theories for understanding extreme halophiles. First, we conclude that proteome acidity is not driven by stabilizing interactions between K+ ions and acidic side chains but by the need for maintaining sufficient solvation and hydration of the protein surface at high salinity through strongly hydrated carboxylates. Second, we propose that obligate protein halophilicity is a non-adaptive property resulting from genetic drift in which constructive neutral evolution progressively incorporates weakly stabilizing K+-binding sites on an increasingly acidic protein surface.  相似文献   
103.
104.
The development of vaccination methods that can overcome the emergence of new types of influenza strains caused by escape mutations is desirable to avoid future pandemics. Here, a novel type of immunogen was designed that targeted the conformation of a highly conserved region of influenza A virus hemagglutinin (HA) composed of two separate sequences that associate to form an anti-parallel β-sheet structure. Our previous study identified this β-sheet region as the structural core in the epitope of a characteristic antibody (B-1) that strongly neutralizes a wide variety of strains within the H3N2 serotype, and therefore this β-sheet region was considered a good target to induce broadly reactive immunity against the influenza A virus. To design the immunogen, residues derived from the B-1 epitope were introduced directly onto a part of enhanced green fluorescent protein (EGFP), whose surface is mostly composed of β-sheets. Through site-directed mutagenesis, several modified EGFPs with an epitope-mimicking structure embedded in their surface were prepared. Two EGFP variants, differing from wild-type (parental) EGFP by only five and nine residues, induced mice to produce antibodies that specifically bind to H3-type HA and neutralize H3N2 virus. Moreover, three of five mice immunized with each of these EGFP variants followed by a booster with equivalent mCherry variants acquired anti-viral immunity against challenge with H3N2 virus at a lethal dosage. In contrast to conventional methods, such as split HA vaccine, preparation of this type of immunogen requires less time and is therefore expected to be quickly responsive to newly emerged influenza viral strains.  相似文献   
105.
CCN3, a member of the CCN protein family, inhibits osteoblast differentiation in vitro. However, the role of CCN3 in bone regeneration has not been well elucidated. In this study, we investigated the role of CCN3 in bone regeneration. We identified the Ccn3 gene by microarray analysis as a highly expressed gene at the early phase of bone regeneration in a mouse bone regeneration model. We confirmed the up-regulation of Ccn3 at the early phase of bone regeneration by RT-PCR, Western blot, and immunofluorescence analyses. Ccn3 transgenic mice, in which Ccn3 expression was driven by 2.3-kb Col1a1 promoter, showed osteopenia compared with wild-type mice, but Ccn3 knock-out mice showed no skeletal changes compared with wild-type mice. We analyzed the bone regeneration process in Ccn3 transgenic mice and Ccn3 knock-out mice by microcomputed tomography and histological analyses. Bone regeneration in Ccn3 knock-out mice was accelerated compared with that in wild-type mice. The mRNA expression levels of osteoblast-related genes (Runx2, Sp7, Col1a1, Alpl, and Bglap) in Ccn3 knock-out mice were up-regulated earlier than those in wild-type mice, as demonstrated by RT-PCR. Bone regeneration in Ccn3 transgenic mice showed no significant changes compared with that in wild-type mice. Phosphorylation of Smad1/5 was highly up-regulated at bone regeneration sites in Ccn3 KO mice compared with wild-type mice. These results indicate that CCN3 is up-regulated in the early phase of bone regeneration and acts as a negative regulator for bone regeneration. This study may contribute to the development of new strategies for bone regeneration therapy.  相似文献   
106.
Atherosclerosis is considered a disease of chronic inflammation largely initiated and perpetuated by macrophage-dependent synthesis and release of pro-inflammatory mediators. Class A scavenger receptor (SR-A) expressed on macrophages plays a key role in this process. However, how SR-A-mediated pro-inflammatory response is modulated in macrophages remains ill defined. Here through immunoprecipitation coupled with mass spectrometry, we reported major vault protein (MVP) as a novel binding partner for SR-A. The interaction between SR-A and MVP was confirmed by immunofluorescence staining and chemical cross-linking assay. Treatment of macrophages with fucoidan, a SR-A ligand, led to a marked increase in TNF-α production, which was attenuated by MVP depletion. Further analysis revealed that SR-A stimulated TNF-α synthesis in macrophages via the caveolin- instead of clathrin-mediated endocytic pathway linked to p38 and JNK, but not ERK, signaling pathways. Importantly, fucoidan invoked an enrichment of MVP in lipid raft, a caveolin-reliant membrane structure, and enhanced the interaction among SR-A, caveolin, and MVP. Finally, we demonstrated that MVP elimination ameliorated SR-A-mediated apoptosis in macrophages. As such, MVP may fine-tune SR-A activity in macrophages which contributes to the development of atherosclerosis.  相似文献   
107.
Discovering proteins that modulate Akt signaling has become a critical task, given the oncogenic role of Akt in a wide variety of cancers. We have discovered a novel diacylglycerol signaling pathway that promotes dephosphorylation of Akt. This pathway is regulated by diacylglycerol kinase δ (DGKδ). In DGKδ-deficient cells, we found reduced Akt phosphorylation downstream of three receptor tyrosine kinases. Phosphorylation upstream of Akt was not affected. Our data indicate that PKCα, which is excessively active in DGKδ-deficient cells, promotes dephosphorylation of Akt through pleckstrin homology domain leucine-rich repeats protein phosphatase (PHLPP) 2. Depletion of either PKCα or PHLPP2 rescued Akt phosphorylation in DGKδ-deficient cells. In contrast, depletion of PHLPP1, another Akt phosphatase, failed to rescue Akt phosphorylation. Other PHLPP substrates were not affected by DGKδ deficiency, suggesting mechanisms allowing specific modulation of Akt dephosphorylation. We found that β-arrestin 1 acted as a scaffold for PHLPP2 and Akt1, providing a mechanism for specificity. Because of its ability to reduce Akt phosphorylation, we tested whether depletion of DGKδ could attenuate tumorigenic properties of cultured cells and found that DGKδ deficiency reduced cell proliferation and migration and enhanced apoptosis. We have, thus, discovered a novel pathway in which diacylglycerol signaling negatively regulates Akt activity. Our collective data indicate that DGKδ is a pertinent cancer target, and our studies could lay the groundwork for development of novel cancer therapeutics.  相似文献   
108.
109.
110.
General anesthetic photolabels have been instrumental in discovering and confirming protein binding partners and binding sites of these promiscuous ligands. We report the in vivo photoactivation of meta-azipropofol, a potent analog of propofol, in Xenopus laevis tadpoles. Covalent adduction of meta-azipropofol in vivo prolongs the primary pharmacologic effect of general anesthetics in a behavioral phenotype we termed “optoanesthesia.” Coupling this behavior with a tritiated probe, we performed unbiased, time-resolved gel proteomics to identify neuronal targets of meta-azipropofol in vivo. We have identified synaptic binding partners, such as synaptosomal-associated protein 25, as well as voltage-dependent anion channels as potential facilitators of the general anesthetic state. Pairing behavioral phenotypes elicited by the activation of efficacious photolabels in vivo with time-resolved proteomics provides a novel approach to investigate molecular mechanisms of general anesthetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号