首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1259篇
  免费   55篇
  国内免费   10篇
  1324篇
  2024年   2篇
  2023年   12篇
  2022年   21篇
  2021年   28篇
  2020年   57篇
  2019年   58篇
  2018年   50篇
  2017年   39篇
  2016年   37篇
  2015年   47篇
  2014年   115篇
  2013年   108篇
  2012年   83篇
  2011年   92篇
  2010年   49篇
  2009年   49篇
  2008年   70篇
  2007年   69篇
  2006年   55篇
  2005年   38篇
  2004年   53篇
  2003年   44篇
  2002年   32篇
  2001年   10篇
  2000年   14篇
  1999年   9篇
  1998年   5篇
  1997年   7篇
  1996年   9篇
  1995年   7篇
  1994年   6篇
  1993年   4篇
  1992年   5篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1984年   2篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有1324条查询结果,搜索用时 15 毫秒
31.
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that participate in the structural and functional maintenance of connective tissues under normal homeostasis. They also act as trophic mediators during tissue repair, generating bioactive molecules that help in tissue regeneration following injury. MSCs serve comparable roles in cases of malignancy and are becoming increasingly appreciated as critical components of the tumor microenvironment. MSCs home to developing tumors with great affinity, where they exacerbate cancer cell proliferation, motility, invasion and metastasis, foster angiogenesis, promote tumor desmoplasia and suppress anti-tumor immune responses. These multifaceted roles emerge as a product of reciprocal interactions occurring between MSCs and cancer cells and serve to alter the tumor milieu, setting into motion a dynamic co-evolution of both tumor and stromal tissues that favors tumor progression. Here, we summarize our current knowledge about the involvement of MSCs in cancer pathogenesis and review accumulating evidence that have placed them at the center of the pro-malignant tumor stroma.  相似文献   
32.
The major cellular components of tumor microenvironment, referred to as the cancer stroma, are composed of cancer-associated fibroblasts that support tumor epithelial growth, invasion and therapeutic resistance. Thus when we speak of developing therapies that address tumor heterogeneity it is not only a matter of different mutations within the tumor epithelia. While individual mutations in the stromal compartment are controversial, the heterogeneity in fibroblastic population in a single tumor is not up for debate. Cooperative interaction among heterotypic fibroblasts and tumor cells contribute to cancer progression. Therefore to tackle solid tumors, we need to understand its complex microenvironment. Here we review some seminal developments in the field of tumor microenvironment, mainly focusing on cancer-associated fibroblast.  相似文献   
33.
The myofibroblast is a stromal cell of the gastrointestinal (GI) tract that has been gaining considerable attention for its critical role in many GI functions. While several myofibroblast cell lines are commercially available to study these cells in vitro, research results from a cell line exposed to experimental cell culture conditions have inherent limitations due to the overly reductionist nature of the work. Use of primary myofibroblasts offers a great advantage in terms of confirming experimental findings identified in a cell line. Isolation of primary myofibroblasts from an animal model allows for the study of myofibroblasts under conditions that more closely mimic the disease state being studied. Isolation of primary myofibroblasts from human colon tissue provides arguably the most relevant experimental data, since the cells come directly from patients with the underlying disease. We describe a well-established technique that can be utilized to isolate primary myofibroblasts from both mouse and human colon tissue. These isolated cells have been characterized to be alpha-smooth muscle actin and vimentin-positive, and desmin-negative, consistent with subepithelial intestinal myofibroblasts. Primary myofibroblast cells can be grown in cell culture and used for experimental purposes over a limited number of passages.  相似文献   
34.
Multiple myeloma (MM) comprises 1% of all malignancies and 10% of all hematological malignancies. MM is a malignancy of plasma cells in the bone marrow where complex and dynamic interactions with the bone marrow microenvironment lead to tumor progression, skeletal destruction and angiogenesis. Despite the discovery of several novel treatments against MM, including the proteasome inhibitor bortezomib, it is considered to be an incurable disease with an average 4–5 years overall survival.  相似文献   
35.
Little is known about the role of folate and polymorphisms associated with folate metabolism on prostate cancer risk in populations of African origin. We examined the relationship between serum folate and prostate cancer and whether any association was modified by genetic polymorphisms for folate metabolism. The study was case–control in design and consisted of 218 men 40–80 years old with newly diagnosed, histologically confirmed prostate cancer and 236 cancer-free men attending the same urology clinics in Jamaica, March 2005–July 2007. Serum folate was measured by an immunoassay method and genomic DNA evaluated for MTHR (C677T and A1298C), MTRR A66G, and MTR A2756G polymorphisms. Mean serum folate concentration was higher among cases (12.3 ± 4.1 nmol/L) than controls (9.7 ± 4.2 nmol/L). Serum folate concentration showed a positive association with prostate cancer (OR, 4.41; CI, 2.52–7.72 per 10 nmol/L) regardless of grade. No interactions were observed between genotype and folate concentration, but a weak gene effect was observed for MTHFR A1298C and low-grade prostate cancer. Larger studies to investigate the role of gene–gene/gene–diet interactions in Black men are needed.  相似文献   
36.

Background

Chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein-1 (MCP-1), belongs to the CC chemokine family which is associated with the disease status and outcomes of cancers. Prostate cancer is the most commonly diagnosed malignancy in men and shows a predilection for metastasis to the bone. However, the effect of CCL2 on human prostate cancer cells is largely unknown. The aim of this study was to examine the role of CCL2 in integrin expression and migratory activity in prostate cancers.

Methods

Prostate cancer migration was examined using Transwell, wound healing, and invasion assay. The PKCδ and c-Src phosphorylations were examined by using western blotting. The qPCR was used to examine the mRNA expression of integrins. A transient transfection protocol was used to examine AP-1 activity.

Results

Stimulation of prostate cancer cell lines (PC3, DU145, and LNCaP) induced migration and expression of integrin αvβ3. Treatment of cells with αvβ3 antibody or siRNA abolished CCL2-increased cell migration. CCL2-increased migration and integrin expression were diminished by CCR2 but not by CCR4 inhibitors, suggesting that the CCR2 receptor is involved in CCL2-promoted prostate cancer migration. CCL2 activated a signal transduction pathway that includes PKCδ, c-Src, and AP-1. Reagents that inhibit specific components of this pathway each diminished the ability of CCL2 to effect cell migration and integrin expression.

Conclusions

Interaction between CCL2 and CCR2 enhances migration of prostate cancer cells through an increase in αvβ3 integrin production.

General significance

CCL2 is a critical factor of prostate cancer metastasis.  相似文献   
37.
Heat shock protein 90 (Hsp90) is a molecular chaperone that regulates the maturation, activation and stability of critical signaling proteins that drive the development and progression of prostate cancer, including the androgen receptor. Despite robust preclinical data demonstrating anti-tumor activity of first-generation Hsp90 inhibitors in prostate cancer, poor clinical responses initially cast doubt over the clinical utility of this class of agent. Recent advances in compound design and development, use of novel preclinical models and further biological insights into Hsp90 structure and function have now stimulated a resurgence in enthusiasm for these drugs as a therapeutic option. This review highlights how the development of new-generation Hsp90 inhibitors with improved physical and pharmacological properties is unfolding, and discusses the potential contexts for their use either as single agents or in combination, for men with metastatic prostate cancer.  相似文献   
38.
Although at present, there is a high incidence of prostate cancer, particularly in the Western world, mortality from this disease is declining and occurs primarily only from clinically significant late stage tumors with a poor prognosis. A major current focus of this field is the identification of new biomarkers which can detect earlier, and more effectively, clinically significant tumors from those deemed “low risk”, as well as predict the prognostic course of a particular cancer. This strategy can in turn offer novel avenues for targeted therapies. The large family of Receptor Tyrosine Kinases, the Ephs, and their binding partners, the ephrins, has been implicated in many cancers of epithelial origin through stimulation of oncogenic transformation, tumor angiogenesis, and promotion of increased cell survival, invasion and migration. They also show promise as both biomarkers of diagnostic and prognostic value and as targeted therapies in cancer. This review will briefly discuss the complex roles and biological mechanisms of action of these receptors and ligands and, with regard to prostate cancer, highlight their potential as biomarkers for both diagnosis and prognosis, their application as imaging agents, and current approaches to assessing them as therapeutic targets. This review demonstrates the need for future studies into those particular family members that will prove helpful in understanding the biology and potential as targets for treatment of prostate cancer.  相似文献   
39.

Background and aim

PSCA is a tissue specific tumor suppressor or oncogene which has been found to be associated with several human tumors including gallbladder cancer. It is considered to be involved in the cell-proliferation inhibition and/or cell-death induction activity. Therefore, we aimed to investigate the role of PSCA gene polymorphisms in gallbladder cancer risk in North Indian population.

Methodology

A total of 405 gallbladder cancer patients and 247 healthy controls were included in the case–control study for risk prediction. We examined the association of two functional SNPs, rs2294008 and rs2978974 in PSCA gene by genotyping using Taqman allelic discrimination assays. Statistical analysis was done using SPSS software, version 17. Linkage disequilibrium and haplotype analysis was done with the help of SNPstats software. FDR test was used to correct for multiple comparisons.

Results

No significant associations of rs2294008 and rs2978974 genetic variants of the PSCA gene were found with GBC risk at allele, genotype or haplotype levels. Stratifying the subjects on the basis of gallstone also did not show any significant result. However, on gender stratification, we found a significant association of Trs2294008-Grs2978974 haplotype with higher risk of GBC in females (FDR Pcorr = 0.021, OR = 1.6). In contrary, Trs2294008-A rs2978974 haplotype conferred significant lower risk in males (FDR Pcorr = 0.013; OR = 0.25).

Conclusions

These findings suggest that PSCA genetic variants may have a significant effect on GBC susceptibility in a gender specific manner.  相似文献   
40.
Abstract

According to the X-ray crystal structures of CYP17A1 (including its complexes with inhibitors), it is shown that a hydrogen bond exists between CYP17A1 and its inhibitors (such as abiraterone and TOK-001). Previous short MD simulations (50?ns) suggested that the binding of abiraterone to CYP17A1 is stronger than that of TOK-001. In this work, by carrying out long atomistic MD simulations (200?ns) of CYP17A1 and its complexes with abiraterone and TOK-001, we observed a binding mode between CYP17A1 and abiraterone, which is different from the binding mode between CYP17A1 and TOK-001. In the case of abiraterone binding, the unfilled volume in the active site cavity increases the freedom of movement of abiraterone within CYP17A1, leading to the collective motions of the helices G and B′ as well as the breaking of hydrogen bond existing between the 3β-OH group of abiraterone and N202 of CYP17A1. However, the unfilled volume in the active site cavity can be occupied by the benzimidazole ring of TOK-001, restraining the motion of TOK-001. By pulling the two inhibitors (abiraterone and TOK-001) out of the binding pocket in CYP17A1, we discovered that abiraterone and TOK-001 were moved from their binding sites to the surface of protein similarly through the channels formed by the helices G and B′. In addition, based on the free energy calculations, one can see that it is energetically favorable for the two inhibitors (abiraterone and TOK-001) to enter into the binding pocket in CYP17A1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号