首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   22篇
  国内免费   3篇
  2024年   2篇
  2023年   3篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   6篇
  2017年   12篇
  2016年   6篇
  2015年   6篇
  2014年   20篇
  2013年   31篇
  2012年   4篇
  2011年   24篇
  2010年   12篇
  2009年   7篇
  2008年   13篇
  2007年   11篇
  2006年   6篇
  2005年   11篇
  2004年   8篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   5篇
  1995年   7篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1974年   1篇
排序方式: 共有297条查询结果,搜索用时 31 毫秒
121.
Living bacteria or bacterial spores are undesirable components of baculovirus preparations (e.g. granulosis virus) produced in vivo. This is also true, at least in Germany, for preparations of Bacillus thuringiensis subsp. tenebrionis. Using ultra-high pressure treatment (at a pressure of 550-580 MPa and a temperature of 50 C) the concentration of these bacterial contaminants was reduced by up to eight orders of magnitude. The biocontrol activity of both preparations remained unchanged.  相似文献   
122.
Recent developments in water status measurement techniques using the psychrometer, the pressure probe, the osmometer and pressure chamber are reviewed, and the process of cell elongation from the viewpoint of plant-water relations is discussed for plants subjected to various environmental stress conditions. Under water-deficient conditions, cell elongation of higher plants can be inhibited by interruption of water flow from the xylem to the surrounding elongating cells. The process of growth inhibition at low water potentials could be reversed by increasing the xylem water potential by means of pressure application in the root region, allowing water to flow from the xylem to the surrounding cells. This finding confirmed that a water potential field associated with growth process,i.e., the growth-induced water potential, is an important regulating factor for cell elongation other than metabolic factors. The concept of the growth-induced water potential was found to be applicable for growth retardation caused by cold stress, heat stress, nutrient deficiency and salinity stress conditions. In the present review, the fact that the cell elongation rate is primarily associated with how much water can be absorbed by elongating cells under water-deficiency, nutrient deficiency, salt stress, cold stress and heat stress conditions is suggested.  相似文献   
123.
We investigated for the first time the respiratory chain system of a deep-sea barophilic bacterium, Shewanella sp. strain DB-172F. A membrane-bound ccb-type quinol oxidase, from cells grown at 60 MPa pressure, was purified to an electrophoretically homogeneous state. The purified enzyme complex consisted of four kinds of subunits with molecular masses of 98, 66, 18.5, and 15 kDa, and it contained 0.96 mol of protoheme and 1.95 mol of covalently bound heme c per mol of enzyme. Only protoheme in the enzyme reacted with CO and CN, and the catalytic activity of the enzyme was 50% inhibited by 4 μM CN. The isoelectric point of the native enzyme complex was determined to be 5.0. This enzyme was specifically induced only under conditions of elevated hydrostatic pressure, and high levels were expressed in cells grown at 60 MPa. The membranes isolated from cells grown at atmospheric pressure (0.1 MPa) exhibited high levels of both cytochrome c oxidase and N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPDH2)-oxidase activity. These results suggest the presence of two kinds of respiratory chains regulated in response to pressure in the deep-sea bacterium DB-172F. Received: November 25, 1997 / Accepted: December 25, 1997  相似文献   
124.
A pressure-induced decrease of the lateral diffusion in pure and cholesterol containing phosphatidylcholine bilayer membranes has been determined by the excimer formation technique using pyrene as probe molecule. The experimental results at pressures up to 150 bars are described satisfactorily by the free volume theory of a molecular transport in liquids. A pressure increase of extrapolated 575 bars decreases the lateral diffusion of lipids by a factor of two in pure dipalmitoylphosphatidylcholine membranes. Higher pressures are necessary to induce the same effect in cholesterol containing membranes. This result is interpreted by the condensing effect of cholesterol in fluid bilayer membranes.  相似文献   
125.
Arachidonic acid has been shown to activate K+-selective, mechanosensitive ion channels in cardiac, neuronal and smooth muscle cells. Since the cardiac G protein (G K )-gated, muscarinic K+ (KACh) channel can also be activated by arachidonic acid, we investigated whether the KACh channel was also sensitive to membrane stretch. In the absence of acetylcholine (ACh), KACh channels were not active, and negative pressure failed to activate these channels. With ACh (10 m) in the pipette, applying negative pressure (0 to –80 mm Hg) to the membrane caused a reversible, pressure-dependent increase in channel activity in cell-attached and inside-out patches (100 m GTP in bath). Membrane stretch did not alter the sensitivity of the KACh channel to GTP. When G K was maximally activated with 100 m GTPS in inside-out patches, the KACh channel activity could be further increased by negative pressure. Trypsin (0.5 mg/ ml) applied to the membrane caused activation of the KACh channel in the absence of ACh and GTP; KACh channel activity was further increased by stretch. These results indicate that the atrial muscarinic K+ channels are modulated by stretch independently of receptor/G protein, probably via a direct effect on the channel protein/ lipid bilayer.  相似文献   
126.
127.
In the cricket ear, sound acts on the external surface of the tympanum and also reaches the inner surface after travelling in at least three pathways in the tracheal system. We have determined the transmission gain of the three internal sound pathways; that is, the change of amplitude and phase angle from the entrances of the tracheal system to the inner surface of the tympanum. In addition, we have measured the diffraction and time of arrival of sound at the ear and at the three entrances at various directions of sound incidence. By combining these data we have calculated how the total driving force at the tympanum depends on the direction of sound. The results are in reasonable agreement with the directionality of the tympanal vibrations as determined with laser vibrometry.At the frequency of the calling song (4.7 kHz), the direction of the sound has little effect on the amplitudes of the sounds acting on the tympanum, but large effects on their phase angles, especially of the sound waves entering the tracheal system at the contralateral side of the body. The master parameter for causing the directionality of the ear in the forward direction is the sound wave entering the contralateral thoracic spiracle. The phase of this sound component may change by 130–140° with sound direction. The transmission of sound from the contralateral inputs is dominated by a very selective high-pass filter, and large changes in amplitude and phase are seen in the transmitted sounds when the sound frequency changes from 4 to 5 kHz. The directionality is therefore very dependent on sound frequency.The transmission gains vary considerably in different individuals, and much variation was also found in the directional patterns of the ears, especially in the effects of sounds from contralateral directions. However, the directional pattern in the frontal direction is quite robust (at least 5 dB difference between the 330° and 30° directions), so these variations have only little effect on how well the individual animals can approach singing conspecifics.Abbreviations CS contralateral spiracle - CT contralateral tympanum - IS ipsilateral spiracle - IT ipsilateral tympanum - P the vectorial sum of the sounds acting on the tympanum  相似文献   
128.
Apelin has been proved to be a critical mediator of vascular function and homeostasis. Here, we investigated roles of Apelin in aortic remodeling and fibrosis in rats with transverse aortic constriction (TAC). Male Sprague-Dawley rats were subjected to TAC and then randomized to daily deliver Apelin-13 (50 μg/kg) or angiotensin type 1 receptor (AT1) blocker Irbesartan (50 mg/kg) for 4 weeks. Pressure overload resulted in myocardial hypertrophy, systolic dysfunction, aortic remodeling and adventitial fibrosis with reduced levels of Apelin in ascending aortas of rat after TAC compared with sham-operated group. These changes were associated with marked increases in levels of miRNA-122, TGFβ1, CTGF, NFAT5, LGR4, and β-catenin. More importantly, Apelin and Irbesartan treatment strikingly prevented TAC-mediated aortic remodeling and adventitial fibrosis in pressure overloaded rats by blocking AT1 receptor and miRNA-122 levels and repressing activation of the CTGF-NFAT5 and LGR4-β-catenin signaling. In cultured primary rat adventitial fibroblasts, exposure to angiotensin II (100 nmol L−1) led to significant increases in cellular migration and levels of TGFβ1, CTGF, NFAT5, LGR4 and β-catenin, which were effectively reversed by pre-treatment with Apelin (100 nmol L−1) and miRNA-122 inhibitor (50 nmol L−1). In conclusion, Apelin counterregulated against TAC-mediated ascending aortic remodeling and angiotensin II-induced promotion of cellular migration by blocking AT1 receptor and miRNA-122 levels and preventing activation of the TGFβ1-CTGF-NFAT5 and LGR4-β-catenin signaling, ultimately contributing to attenuation of aortic adventitial fibrosis. Our data point to Apelin as an important regulator of aortic remodeling and adventitial fibrosis and a promising target for vasoprotective therapies.  相似文献   
129.
The patch-clamp technique was used to obtain information on the existence and properties of ion channels in giant protoplasts obtained from the Gram-positive bacterium Streptococcus faecalis. The membrane proved to contain a pore with numerous conductance states, ranging from 10 pS to several nanosiemens. Application of a slight pressure differential across the membrane resulted in the activation of the channel. The pressure sensitivity points to a relationship between this channel and one recently discovered in E.coli spheroplasts [(1987) Proc. Natl. Acad. Sci. USA 84, 2297–2301] suggesting that pores of this type might be widespread among prokaryotes.  相似文献   
130.
Excision and subsequent incubation of the apices (1 cm) of wheat (Triticum aestivum L.) seedling roots in simple media severely reduced elongation from 28 mm·(24 h)-1 in intact roots to a maximum of 2 mm·(24 h)-1 in excised roots. The reduction in growth was accompanied by a loss of cell turgor in the growing zone but was correlated with a hardening of the cell walls in this region. Rheological properties were measured as percent extensibility (both plastic and elastic) using a tensiometer, and as instantaneous volumetric elastic modulus ( i) using the pressure probe. Excision decreased plastic and elastic properties with a half-time of some 60 min. Plastic extension was reduced from 2.5% to 0.9% and elastic from 4.8% to 2.6% for an 8-g load. By contrast, i was increased by excision. The observed reduction in root elongation rate was accompained by a reduction in mature cell length from 240 m to 40 m and a shortening of the zone of cell expansion.Symbol i instantaneous volumetric elastic modulus  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号