首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   276篇
  免费   20篇
  国内免费   3篇
  299篇
  2024年   2篇
  2023年   3篇
  2022年   3篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   7篇
  2017年   12篇
  2016年   6篇
  2015年   6篇
  2014年   20篇
  2013年   31篇
  2012年   4篇
  2011年   24篇
  2010年   12篇
  2009年   7篇
  2008年   13篇
  2007年   11篇
  2006年   6篇
  2005年   11篇
  2004年   8篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   5篇
  1995年   7篇
  1994年   3篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   5篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1983年   6篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1978年   1篇
  1974年   1篇
排序方式: 共有299条查询结果,搜索用时 0 毫秒
1.
Summary The sensory receptor responsive to pressure applied internally to the ventral abdominal body wall of the blood-feeding insects, Rhodnius prolixus, is a single sense cell containing, at its distal end, a cilium enclosed within a scolopale, a densely staining structure characteristic of insect scolopidial sensilla. A small spherical structure lies within a dilation near the midregion of the cilium, and contains nine heavily staining bodies, the position of each corresponding to a pair of microtubules in the cilium. Proximal to the dilation, the microtubules are organized in a ring of nine pairs with one microtubule of each pair associated with dyneinlike arms. Dastal to the dilation a central pair of microtubules is present, but dyneinlike arms are absent. The scolopale cell, which gives risc to the scolopale, has cytoplasmic invaginations that form an elaborate array of extracellular compartments surrounding the body wall of the sense cell. These compartments may serve to dampen high frequency vibrations permitting the receptor to respond to pressure exerted by touch, an attribute in keeping with the receptor's proposed function of detecting abdominal distension related to the size and movement of the stomach.  相似文献   
2.
Summary The most widely used technique of leaf water potential measurements is with the Scholander pressure chamber. Representative leaf water potential values require many determinations on individual leaves and this can be time consuming in large fields or experiments with multiple treatments. This paper describes a method of obtaining a mean value more rapidly, by using two leaves in the pressure chamber at the same time, but recording the end point of each leaf separately.  相似文献   
3.
The turgor pressure and water relation parameters were determined in single photoautotrophically grown suspension cells and in individual cells of intact leaves of Chenopodium rubrum using the miniaturized pressure probe. The stationary turgor pressure in suspension-cultured cells was in the range of betwen 3 and 5 bar. From the turgor pressure relaxation process, induced either hydrostatically (by means of the pressure probe) or osmotically, the halftime of water exchange was estimated to be 20±10 s. No polarity was observed for both ex- and endosmotic water flow. The volumetric elastic modulus, , determined from measurements of turgor pressure changes, and the corresponding changes in the fractional cell volume was determined to be in the range of between 20 and 50 bar. increases with increasing turgor pressure as observed for other higher plant and algal cells. The hydraulic conductivity, Lp, is calculated to be about 0,5–2·10–6 cm s–1 bar–1. Similar results were obtained for individual leaf cells of Ch. rubrum. Suspension cells immobilized in a cross-linked matrix of alginate (6 to 8% w/w) revealed the same values for the half-time of water exchange and for the hydraulic conductivity, Lp, provided that the turgor pressure relaxation process was generated hydrostatically by means of the pressure probe. Thus, it can be concluded that the unstirred layer from the immobilized matrix has no effect on the calculation of Lp from the turgor pressure relaxation process, using the water transport equation derived for a single cell surrounded by a large external volume. By analogy, this also holds true for Lp-values derived from turgor pressure changes generated by the pressure probe in a single cell within the leaf tissue. The fair similarity between the Lp-values measured in mesophyll cells in situ and mesophyll-like suspension cells suggests that the water transport relations of a cell within a leaf are not fundamentally different from those measured in a single cell.  相似文献   
4.
The activity of the slug Limax maximus was studied in relation to weather. Three hundred-and-fifty-eight hourly observations of activity and weather were made on 21 nights from May until October, 1976. Factors causally important to molluscan activity were included in a step-down correlation-regression analysis of daily and seasonal behavior. The analysis was also performed using weather data from the previous hourly observation. Models using lag-weather did not explain as much variability as did concurrent weather. The regression models explained about 73% to 87% of the observed variation in activity. The most important factors included in the regression models were time of day (circadian rhythm), light intensity, changes in light intensity and surface temperature. Shelter temperature, temperature gradients, length of the night, and time of sunset were also included in some models. Age and hydration were shown to be key factors in other experiments. A model incorporating weather thresholds estimated from field data explained 83.06% of the variability in the activity of L. maximus over the season. The values predicted from the model did not differ significantly from those actually observed in the field (Kolmogorov-Smirnov test, p>0.50).  相似文献   
5.
Molecular dynamics are conducted on a dodecanoic acid monolayer/aqueous surface. Surface pressure is controlled by imposing constant-volume conditions for series of lengths of the square slab constituting the MD cell. The response of the alkanoate chains to the pressure is followed by examining various computed quantities that monitor their conformational order. These include atom-pair radial distribution functions, chain torsional angles, energies, atomic densities perpendicular to the interface, diffusivities and atomic plots. These quantities lead to chain separations which in the range 4-5 Å implying order when the alkanoate chains have a mean area of 0.18 nm 2.  相似文献   
6.
The TRIC channel subtypes, namely TRIC-A and TRIC-B, are intracellular monovalent cation-specific channels and likely mediate counterion movements to support efficient Ca2+ release from the sarco/endoplasmic reticulum. Vascular smooth muscle cells (VSMCs) contain both TRIC subtypes and two Ca2+ release mechanisms; incidental opening of ryanodine receptors (RyRs) generates local Ca2+ sparks to induce hyperpolarization and relaxation, whereas agonist-induced activation of inositol trisphosphate receptors produces global Ca2+ transients causing contraction. Tric-a knock-out mice develop hypertension due to insufficient RyR-mediated Ca2+ sparks in VSMCs. Here we describe transgenic mice overexpressing TRIC-A channels under the control of a smooth muscle cell-specific promoter. The transgenic mice developed congenital hypotension. In Tric-a-overexpressing VSMCs from the transgenic mice, the resting membrane potential decreased because RyR-mediated Ca2+ sparks were facilitated and cell surface Ca2+-dependent K+ channels were hyperactivated. Under such hyperpolarized conditions, L-type Ca2+ channels were inactivated, and thus, the resting intracellular Ca2+ levels were reduced in Tric-a-overexpressing VSMCs. Moreover, Tric-a overexpression impaired inositol trisphosphate-sensitive stores to diminish agonist-induced Ca2+ signaling in VSMCs. These altered features likely reduced vascular tonus leading to the hypotensive phenotype. Our Tric-a-transgenic mice together with Tric-a knock-out mice indicate that TRIC-A channel density in VSMCs is responsible for controlling basal blood pressure at the whole-animal level.  相似文献   
7.
Resistance arteries have been implicated as a major contributing factor in the sequela of disease conditions such as hypertension and diabetes and, as such, are a major focus of cardiovascular research. The paracrine influence of the intimal endothelial layer of resistance arteries is well established. Considering the growing body of evidence substantiating a functionally relevant vascular adventitia, in this study we have established a technique that permits determination of the functional influence of the adventitial layer on resistance artery tone. Isolating adventitial-dependent function, analogous to isolating endothelial function, has potentially significant implications for studying the as yet unexplored role of the microvascular adventitial layer in modulating acute vascular contractile function.  相似文献   
8.
9.
In this study, we investigated the effect of pressure on protein structure and stability at high temperature. Thermoinactivation experiments at 5 and 500 atm were performed using the wild-type (WT) enzyme and two single mutants (D167T and T138E) of the glutamate dehydrogenase (GDH) from the hyperthermophile Thermococcus litoralis. All three GDHs were stabilized, although to different degrees, by the application of 500 atm. Interestingly, the degree of pressure stabilization correlated with GDH stability as well as the magnitude of electrostatic repulsion created by residues at positions 138 and 167. Thermoinactivation experiments also were performed in the presence of trehalose. Addition of the sugar stabilized all three GDHs; the degree of sugar-induced thermostabilization followed the same order as pressure stabilization. Previous studies suggested a mechanism whereby the enzyme adopts a more compact and rigid structure and volume fluctuations away from the native state are diminished under pressure. The present results on the three GDHs allowed us to further confirm and refine the proposed mechanism for pressure-induced thermostabilization. In particular, we propose that pressure stabilizes against thermoinactivation by shifting the equilibrium between conformational substates of the GDH hexamer, thus inhibiting irreversible aggregation.  相似文献   
10.
The molecular biology of barophilic bacteria   总被引:3,自引:1,他引:3  
Many microorganisms from the deep-sea display high-pressure-adapted — also described as barophilic or piezophilic — growth characteristics. Phylogenetic studies have revealed that a large proportion of the barophilic bacteria currently in culture collections belong to a distinct subgroup of the genus Shewanella, referred to as the “barophile branch.“ Many of the basic properties of barophiles that enable their survival at extremes of pressure remain to be elucidated. However, several genes whose expression is regulated by pressure, or which appear to be critical to baroadaptation, have been uncovered. One such operon, whose presence appears to be restricted to the “barophile branch,” has been identifed in DNA samples obtained from sediments recovered in the deepest ocean trench. In the case of another set of pressure-regulated genes, regulatory elements required for pressure signaling have been uncovered. The nature and regulation of these genes is discussed. Received: February 19, 1997 / Accepted: March 3, 1997  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号