首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   899篇
  免费   98篇
  国内免费   52篇
  2024年   1篇
  2023年   17篇
  2022年   12篇
  2021年   27篇
  2020年   35篇
  2019年   34篇
  2018年   31篇
  2017年   43篇
  2016年   40篇
  2015年   55篇
  2014年   64篇
  2013年   67篇
  2012年   32篇
  2011年   37篇
  2010年   42篇
  2009年   49篇
  2008年   59篇
  2007年   52篇
  2006年   43篇
  2005年   42篇
  2004年   29篇
  2003年   24篇
  2002年   24篇
  2001年   24篇
  2000年   22篇
  1999年   20篇
  1998年   11篇
  1997年   20篇
  1996年   12篇
  1995年   13篇
  1994年   7篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   7篇
  1989年   8篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   6篇
  1980年   5篇
  1979年   2篇
  1978年   4篇
  1975年   1篇
排序方式: 共有1049条查询结果,搜索用时 31 毫秒
71.
A process-based carbonate budget was used to compare carbonate framework production at two reef sites subject to varying degrees of fluvial influence in Rio Bueno, Jamaica. The turbid, central embayment was subjected to high rates of fluvial sediment input, framework accretion was restricted to ≤30 m, and net carbonate production was 1,887 g CaCO3 m−2 year−1. Gross carbonate production (GCP) was dominated by scleractinians (97%), particularly by sediment-resistant species, e.g. Diploria strigosa on the reef flat (<2 m). Calcareous encrusters contributed very little carbonate. Total bioerosion removed 265 g CaCO3 m−2 year−1 and was dominated by microborers. At the clear-water site, net carbonate production was 1,236 g CaCO3 m−2 year−1; the most productive zone was on the fore-reef (10 m). Corals accounted for 82% of GCP, and encrusting organisms 16%. Bioerosion removed 126 g CaCO3 m−2 year−1 and was dominated by macroborers. Total fish and urchin grazing was limited throughout (≤20 g CaCO3 m−2 year−1). The study demonstrates that: (1) carbonate production and net reef accretion can occur where environmental conditions approach or exceed perceived threshold levels for coral survival; and (2) although live coral cover (and carbonate production rates) were reduced on reef-front sites along the North Jamaican coast, low population densities of grazing fish and echinoids to some extent offset this, thus maintaining positive carbonate budgets.  相似文献   
72.
Goal, Scope and Background The life cycles of many products including textiles contain chemicals for which process flow data are not known or are too time consuming to collect. Although each chemical may not contribute significantly to the LCA results of the product, which might justify excluding them, but together their contribution could be significant. Similarly, rough estimates of the process flows for the production of a single chemical may be very uncertain and considered meaningless, while the estimates of the cumulative data of process flows for several chemicals may be less uncertain and be a meaningful contribution to the quality of the LCA results. There are methods for estimation of process flows for different types of products, with varying demands regarding input data and time and with varying accuracy of the results. This work contributes to the available methods, focusing on simple estimations for production of chemical substances. The goal was to create a fast method for estimation of emissions, resource and energy flows (process flows) for the production of chemicals, based on easily available data on the properties of the chemicals. The process flows investigated were limited to those normally associated with process industries and contributing most to depletion of resources, to global warming, acidification, eutrophication and photochemical ozone production, i.e. use of energy, crude oil, coal, natural gas, uranium in ore and emissions of CO2, SOx, NOx, NMVOC, methane, BOD, COD and total N. Toxic substances were excluded, since toxic emissions are substance specific and cannot be included in a generalization. Method Available data for the process flows for the production of chemicals of mainly fossil origin were correlated to properties of chemicals such as amount of carbon in the molecule, heat of formation and average number of chemical reaction steps in the production. The production procedures were found in readily available literature. Up to about six reaction steps were evaluated in the correlation study. The variations in the process flows among the chemicals studied were calculated. Results and Discussion There were weak correlations between average number of chemical reaction steps in the production and energy use, COD measured in water emissions, and SOx and NOx emissions to air. For the remaining properties of chemicals and process flows, there were only weak correlations for share of double bonding in the molecule if only molecules containing double bondings were included. Conclusions The precision in estimation of the process flows increases non-significantly when adding information on the number of reaction steps or share of double bonding for chemicals containing double bonding is added. Recommendations and Outlook It seems reasonable to start with a simple grouping method to estimate the process flows for the production of a chemical of fossil origin. Further investigations might investigate whether there is a correlation between process flows and the costs of chemicals, and further study the correlations between process flows and share of double bonding for chemicals containing double bondings.  相似文献   
73.
The effects of bottom trawling on benthic invertebrates include reductions of biomass, diversity and body size. These changes may negatively affect prey availability for demersal fishes, potentially leading to reduced food intake, body condition and yield of fishes in chronically trawled areas. Here, the effect of trawling on the prey availability and diet of two commercially important flatfish species, plaice (Pleuronectes platessa) and dab (Limanda limanda), was investigated over a trawling intensity gradient in the Irish Sea. Previous work in this area has shown that trawling negatively affects the condition of plaice but not of dab. This study showed that reductions in local prey availability did not result in reduced feeding of fish. As trawling frequency increased, both fish and prey biomass declined, such that the ratio of fish to prey remained unchanged. Consequently, even at frequently trawled sites with low prey biomass, both plaice and dab maintained constant levels of stomach fullness and gut energy contents. However, dietary shifts in plaice towards energy-poor prey items were evident when prey species were analysed individually. This, together with a potential decrease in foraging efficiency due to low prey densities, was seen as the most plausible cause for the reduced body condition observed. Understanding the relationship between trawling, benthic impacts, fish foraging and resultant body condition is an important step in designing successful mitigation measures for future management strategies in bottom trawl fisheries.  相似文献   
74.
TRPV1 (transient receptor potential vanilloid 1) proteins are heat-activated nonselective cation channels. TRPV1 channels are polymodal in their function and exhibit multifaceted regulation with various molecular compounds. In this regard, phosphoinositides, particularly phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-phosphate, are important channel regulators. However, their effects on TRPV1 channel activity have not been conclusively determined. To characterize temperature-induced activation of TRPV1 in the presence of different phospholipids, we purified the TRPV1 protein from HEK-293 cells and incorporated it into planar lipid bilayers. In the presence of 2.5 μm phosphatidylinositol 4,5-bisphosphate, TRPV1 channels demonstrated rapid activation at 33–39 °C and achieved full channel opening at 42 °C. At this temperature range, TRPV1 heat activation exhibited steep temperature dependence (temperature coefficient (Q10) of 18), and the channel openings were accompanied by large changes in entropy and enthalpy, suggesting a substantial conformation change. At a similar temperature range, another phosphoinositide, phosphatidylinositol 4-phosphate, also potentiated heat activation of TRPV1, but with much lower efficiency. Negatively charged phosphatidylglycerol could also induce heat activation of TRPV1 channels, although with a small-conductance state. Our data demonstrate that phospholipids, specifically phosphoinositides, are important regulators of TRPV1 and are required for heat-induced channel activity.  相似文献   
75.
Calcium-permeable and thermosensitive transient receptor potential (TRP) channels mediate the nociceptive transduction of noxious temperature in Drosophila nociceptors. However, the underlying molecular mechanisms are not completely understood. Here we find that Subdued, a calcium-activated chloride channel of the Drosophila anoctamin family, functions in conjunction with the thermo-TRPs in thermal nociception. Genetic analysis with deletion and the RNAi-mediated reduction of subdued show that subdued is required for thermal nociception in nociceptors. Further genetic analysis of subdued mutant and thermo-TRP mutants show that they interact functionally in thermal nociception. We find that Subdued expressed in heterologous cells mediates a strong chloride conductance in the presence of both heat and calcium ions. Therefore, our analysis suggests that Subdued channels may amplify the nociceptive neuronal firing that is initiated by thermo-TRP channels in response to thermal stimuli.  相似文献   
76.
Maps of continental‐scale land cover are utilized by a range of diverse users but whilst a range of products exist that describe present and recent land cover in Europe, there are currently no datasets that describe past variations over long time‐scales. User groups with an interest in past land cover include the climate modelling community, socio‐ecological historians and earth system scientists. Europe is one of the continents with the longest histories of land conversion from forest to farmland, thus understanding land cover change in this area is globally significant. This study applies the pseudobiomization method (PBM) to 982 pollen records from across Europe, taken from the European Pollen Database (EPD) to produce a first synthesis of pan‐European land cover change for the period 9000 bp to present, in contiguous 200 year time intervals. The PBM transforms pollen proportions from each site to one of eight land cover classes (LCCs) that are directly comparable to the CORINE land cover classification. The proportion of LCCs represented in each time window provides a spatially aggregated record of land cover change for temperate and northern Europe, and for a series of case study regions (western France, the western Alps, and the Czech Republic and Slovakia). At the European scale, the impact of Neolithic food producing economies appear to be detectable from 6000 bp through reduction in broad‐leaf forests resulting from human land use activities such as forest clearance. Total forest cover at a pan‐European scale moved outside the range of previous background variability from 4000 bp onwards. From 2200 bp land cover change intensified, and the broad pattern of land cover for preindustrial Europe was established by 1000 bp . Recognizing the timing of anthropogenic land cover change in Europe will further the understanding of land cover‐climate interactions, and the origins of the modern cultural landscape.  相似文献   
77.
Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing‐season studies to incorporate winter.  相似文献   
78.
Soil biological variables are considered good soil quality indicators due to their high sensitivity and ability to reflect soil management effects. However, they frequently show high temporal variability. Our objectives were: (a) to analyze temporal stability and seasonal effect on biological variables, (b) to choose between autumn and spring to sample for soil biological variables, and (c) to determine biological variables able to discriminate among selected soil subgroups. Areas with minimal human disturbance were sampled in three soil orders (Mollisol, Vertisol and Alfisol) during two and a half years, each autumn and spring. Microbial biomass C and N (MBC, MBN), basal respiration (Resp), metabolic quotient (qCO2), potential of N mineralization (PNM-AI), soil organic C (TOC) and total soil N (TON) were measured in three composite soil samples collected from homogeneous areas at 0–15 cm depth. For the studied soils, selected soil biological variables presented different levels depending on the time of sampling, spring or autumn. Hence, the importance of pointing out the time of sampling to report results of these variables in this kind of studies is remarked. In general, biological variables presented higher stability when we sampled soils in autumn compared to spring. Because of this, we used autumn soil samples to determine the best soil biological variables to discriminate among selected subgroups of soils. The separation of soil subgroups by means of discriminant analysis using just TOC and TON was scrutinized, considering that these soil variables are routinely measured in soil test laboratories. Nonetheless they were not able to discriminate properly among soil subgroups because they showed high error rates classifying the samples in the correct subgroups. In contrast, the variables PMN-AI, MBC, and MBN adequately discriminated the five soil subgroups. From the biological variables, PMN-AI and MBC were the best ones to characterize (discriminate) among the five soil subgroups. Particularly, PMN-AI was able to separate soils by their suitability for agricultural purposes.  相似文献   
79.
Oceanic uptake of anthropogenic carbon dioxide (CO2) is altering the carbonate chemistry of seawater, with potentially negative consequences for many calcifying marine organisms. At the same time, increasing fisheries exploitation is impacting on marine ecosystems. Here, using increased benthic‐invertebrate mortality as a proxy for effects of ocean acidification, the potential impact of the two stressors of fishing and acidification on the southeast Australian marine ecosystem to year 2050 was explored. The individual and interaction effects of the two stressors on biomass and diversity were examined for the entire ecosystem and for regional assemblages. For 61 functional groups or species, the cumulative effects of moderate ocean acidification and fishing were additive (30%), synergistic (33%), and antagonistic (37%). Strong ocean acidification resulted in additive (22%), synergistic (40%), and antagonistic (38%) effects. The greatest impact was on the demersal food web, with fishing impacting predation and acidification affecting benthic production. Areas that have been subject to intensive fishing were the most susceptible to acidification effect, although fishing also mitigated some of the decline in biodiversity observed with moderate acidification. The model suggested that ocean acidification and long‐term fisheries exploitation could act synergistically with the increasing sensitivity to change from long‐term (decades) fisheries exploitation potentially causing unexpected restructuring of the pelagic and demersal food webs. Major regime shifts occur around year 2040. Greater focus is needed on how differential fisheries exploitation of marine resources may exacerbate or accelerate effects of environmental changes such as ocean acidification.  相似文献   
80.
Indirect effects from climate‐driven changes in ecosystems that are remote from direct human activity pose challenges for ecological restoration. Significant and often indirect impacts on alpine ecosystems, the primary ecosystem under consideration in this article, threaten historical‐reference conditions and the viability of some species. The impetus for restoration is similar to projects involving more direct and proximate impacts, but the issues are more complicated in remote ecosystems. Restoration efforts in remote ecosystems might do more harm than good, and the effort required for effective restoration might be greater than easily justified given the shortfall of resources for restoring more heavily impacted ecosystems. The long duration and integration of impacts on remote landscapes pose a distinct set of challenges to restorationists. Intervening in remote ecosystems makes them less remote by definition (they are now affected by human agency). In this article, we examine scientific, technical, and moral issues and offer an initial model for assessing the appropriateness of restoring remote landscapes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号