首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2119篇
  免费   62篇
  国内免费   78篇
  2259篇
  2024年   5篇
  2023年   17篇
  2022年   22篇
  2021年   9篇
  2020年   14篇
  2019年   26篇
  2018年   24篇
  2017年   37篇
  2016年   26篇
  2015年   32篇
  2014年   87篇
  2013年   122篇
  2012年   86篇
  2011年   103篇
  2010年   111篇
  2009年   91篇
  2008年   96篇
  2007年   99篇
  2006年   106篇
  2005年   72篇
  2004年   72篇
  2003年   86篇
  2002年   58篇
  2001年   47篇
  2000年   46篇
  1999年   55篇
  1998年   43篇
  1997年   59篇
  1996年   32篇
  1995年   42篇
  1994年   57篇
  1993年   46篇
  1992年   38篇
  1991年   34篇
  1990年   35篇
  1989年   29篇
  1988年   26篇
  1987年   15篇
  1986年   31篇
  1985年   39篇
  1984年   35篇
  1983年   19篇
  1982年   28篇
  1981年   25篇
  1980年   24篇
  1979年   16篇
  1978年   7篇
  1977年   11篇
  1976年   4篇
  1973年   6篇
排序方式: 共有2259条查询结果,搜索用时 15 毫秒
951.
The large conductance Ca2+-activated K+ (BK) channel, expressed abundantly in vascular smooth muscle cells (SMCs), is a key determinant of vascular tone. BK channel activity is tightly regulated by its accessory β1 subunit (BK-β1). However, BK channel function is impaired in diabetic vessels by increased ubiquitin/proteasome-dependent BK-β1 protein degradation. Muscle RING finger protein 1 (MuRF1), a muscle-specific ubiquitin ligase, is implicated in many cardiac and skeletal muscle diseases. However, the role of MuRF1 in the regulation of vascular BK channel and coronary function has not been examined. In this study, we hypothesized that MuRF1 participated in BK-β1 proteolysis, leading to the down-regulation of BK channel activation and impaired coronary function in diabetes. Combining patch clamp and molecular biological approaches, we found that MuRF1 expression was enhanced, accompanied by reduced BK-β1 expression, in high glucose-cultured human coronary SMCs and in diabetic vessels. Knockdown of MuRF1 by siRNA in cultured human SMCs attenuated BK-β1 ubiquitination and increased BK-β1 expression, whereas adenoviral expression of MuRF1 in mouse coronary arteries reduced BK-β1 expression and diminished BK channel-mediated vasodilation. Physical interaction between the N terminus of BK-β1 and the coiled-coil domain of MuRF1 was demonstrated by pulldown assay. Moreover, MuRF1 expression was regulated by NF-κB. Most importantly, pharmacological inhibition of proteasome and NF-κB activities preserved BK-β1 expression and BK-channel-mediated coronary vasodilation in diabetic mice. Hence, our results provide the first evidence that the up-regulation of NF-κB-dependent MuRF1 expression is a novel mechanism that leads to BK channelopathy and vasculopathy in diabetes.  相似文献   
952.
As all integral membrane proteins, voltage-gated ion channels are embedded in a lipid matrix that regulates their channel behavior either by physicochemical properties or by direct binding. Because manipulation of the lipid composition in cells is difficult, we investigated the influence of different lipids on purified KvAP channels reconstituted in planar lipid bilayers of known composition. Lipids developed two distinct and independent effects on the KvAP channels; lipids interacting with the pore lowered the energy barriers for the final transitions, whereas voltage sensor-bound lipids shifted the midpoint of activation dependent on their electrostatic charge. Above all, the midpoint of activation was determined only by those lipids the channels came in contact with first after purification and can seemingly only be exchanged if the channel resides in the open state. The high affinity of the bound lipids to the binding site has implications not only on our understanding of the gating mechanism but also on the general experimental design of any lipid dependence study.  相似文献   
953.
Dipeptidyl peptidase-like protein 6 (DPP6) is an auxiliary subunit of the Kv4 family of voltage-gated K+ channels known to enhance channel surface expression and potently accelerate their kinetics. DPP6 is a single transmembrane protein, which is structurally remarkable for its large extracellular domain. Included in this domain is a cysteine-rich motif, the function of which is unknown. Here we show that this cysteine-rich domain of DPP6 is required for its export from the ER and expression on the cell surface. Disulfide bridges formed at C349/C356 and C465/C468 of the cysteine-rich domain are necessary for the enhancement of Kv4.2 channel surface expression but not its interaction with Kv4.2 subunits. The short intracellular N-terminal and transmembrane domains of DPP6 associates with and accelerates the recovery from inactivation of Kv4.2, but the entire extracellular domain is necessary to enhance Kv4.2 surface expression and stabilization. Our findings show that the cysteine-rich domain of DPP6 plays an important role in protein folding of DPP6 that is required for transport of DPP6/Kv4.2 complexes out of the ER.  相似文献   
954.
Photosynthesis involves the conversion of light into chemical energy through a series of electron transfer reactions within membrane-bound pigment/protein complexes. The Photosystem II (PSII) complex in plants, algae and cyanobacteria catalyse the oxidation of water to molecular O2. The complexity of PSII has thus far limited attempts to chemically replicate its function. Here we introduce a reverse engineering approach to build a simple, light-driven photo-catalyst based on the organization and function of the donor side of the PSII reaction centre. We have used bacterioferritin (BFR) (cytochrome b1) from Escherichia coli as the protein scaffold since it has several, inherently useful design features for engineering light-driven electron transport. Among these are: (i.) a di-iron binding site; (ii.) a potentially redox-active tyrosine residue; and (iii.) the ability to dimerise and form an inter-protein heme binding pocket within electron tunnelling distance of the di-iron binding site. Upon replacing the heme with the photoactive zinc-chlorin e6 (ZnCe6) molecule and the di-iron binding site with two manganese ions, we show that the two Mn ions bind as a weakly coupled di-nuclear Mn2II,II centre, and that ZnCe6 binds in stoichiometric amounts of 1:2 with respect to the dimeric form of BFR. Upon illumination the bound ZnCe6 initiates electron transfer, followed by oxidation of the di-nuclear Mn centre possibly via one of the inherent tyrosine residues in the vicinity of the Mn cluster. The light dependent loss of the MnII EPR signals and the formation of low field parallel mode Mn EPR signals are attributed to the formation of MnIII species. The formation of the MnIII is concomitant with consumption of oxygen. Our model is the first artificial reaction centre developed for the photo-catalytic oxidation of a di-metal site within a protein matrix which potentially mimics water oxidation centre (WOC) photo-assembly.  相似文献   
955.
We found alpha-glucosidase inhibitory (α-GI) effect of metal ions and their complexes which showed the high blood glucose lowering effect in diabetic model animals. The Cu(II) ion and its complexes showed strong α-GI activity greater than clinically used acarbose in in vitro studies. Furthermore, in in vivo experiments, α-GI action was newly discovered in normal ddy mice. These results suggested that one of action mechanisms of the anti-diabetic metal ions and complexes is related to the α-GI effects.  相似文献   
956.
An authentic soluble metallo-protein nucleotide pyrophosphatase/phosphodiesterase (ELNPP) was purified to homogeneity from Euphorbia characias latex. The native protein had a molecular mass of 80 ± 5 kDa and was shown to be formed by two apparently identical subunits, each containing 1 Ca2+ and 1 Mg2+ ion. Whereas Mg2+ was shown to be strongly bound to the enzyme, Ca2+ was easily removed by treatment with EDTA. Ca2+-demetalated enzyme was shown to be almost totally inactive and the activity was fully restored incubating the demetalated ELNPP with Ca2+ ions. ELNPP exhibited hydrolytic activities toward pyrophosphate/phosphodiester bonds of a broad range of substrates and very efficiently hydrolyzed the artificial substrate thymidine 5′-monophosphate 4-nitrophenyl ester generating 4-nitrophenolate as a final product, and it has been used for enzyme kinetic experiments. ELNPP represents the first example of a nucleotide pyrophosphatase/phosphodiesterase enzyme purified from the latex of a plant belonging to the large genus Euphorbia.  相似文献   
957.
A novel and sensitive biosensor based on aptamer and pyrene-labeled fluorescent probes for the determination of K+ was developed. The aptamer was used as a molecular recognition element and a partially complementary oligonucleotide with the aptamer was labeled by pyrene moieties at both ends to transduce the binding event of K+ with aptamer. In the presence of K+, the complementary oligonucleotides were displaced from aptamers, which was accompanied by excimer fluorescence of pyrenes because the self-hairpin structure of the complementary oligonucleotide brought pyrene moieties into close proximity. However, it gave only monomer emission in the absence of K+. Under optimum conditions, the relative fluorescence intensity of pyrene was proportional to the concentration of K+ in the range of 6.0 × 10−4 to 2.0 × 10−2 M. A detection limit of 4.0 × 10−4 M was achieved. Moreover, this method was able to detect K+ with high selectivity in the presence of Na+, , Mg2+, and Ca2+ ions of biological fluids. In brief, the assay may have great potential applications, especially in a biological environment because of its simplicity, sensitivity, and specificity.  相似文献   
958.
The human Ether-à-go-go Related Gene (hERG) potassium channel mediates the rapid delayed rectifier current (IKr) in the cardiac action potential. Mutations in the 135 amino acid residue N-terminal domain (NTD) cause channel dysfunction or mis-translocation. To study the structure of NTD, it was overexpressed and purified from Escherichia coli cells using affinity purification and gel filtration chromatography. The purified protein behaved as a monomer under purification conditions. Far- and near-UV, circular dichroism (CD) and solution nuclear magnetic resonance (NMR) studies showed that the purified protein was well-folded. The solution structure of NTD was obtained and the N-terminal residues 13-23 forming an amphipathic helix which may be important for the protein-protein or protein-membrane interactions. NMR titration experiment also demonstrated that residues from 88 to 94 in NTD are important for the molecular interaction with the peptide derived from the S4-S5 linker.  相似文献   
959.
The chemiluminescence (CL) phenomena of lanthanide (Ln) ions and their coordinate complexes in peroxomonosulfate system and the energy transfer mechanism during the process were investigated in this work. A strong and sharp CL signal was yielded when the Eu(III) or Tb(III) solution was added to the peroxymonosulfate solution. The CL intensity was greatly enhanced by 2,6‐pyridinedicarboxylic acid (DPA) ligand [maximum enhancement reached when Ln(III):DPA was 1:1] and hexadecyltrimethylammonium chloride micelles. The degree of enhancement of DPA and micelles on Ln(III) CL was related to the fluorescence lifetimes of Ln(III) in different media. According to the ESR spin‐trapping experiments of 2,2,6,6‐tetramethyl‐4‐piperidone and the specific quenching experiments of 1,4‐diazabicyclo[2.2.2]octane and sodium azide, singlet oxygen was generated though the Ln(III) ion‐catalyzed decomposition of peroxymonosulfate. From the comparisons of the fluorescence and CL spectra, lanthanide ions were the luminescence emitter and the ligand DPA absorbed the energy from singlet oxygen and transferred it to Ln(III) ions in the coordinate complexes. Micelles can enhance the CL intensity by improving intermolecular energy transfer efficiencies, removing the quenching effect of water and prolonging the lifetime of singlet oxygen. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
960.
Curcumin, a major constituent of the spice turmeric, is a nutriceutical compound reported to possess therapeutic properties against a variety of diseases ranging from cancer to cystic fibrosis. In whole-cell patch-clamp experiments on bovine adrenal zona fasciculata (AZF) cells, curcumin reversibly inhibited the Kv1.4K+ current with an IC50 of 4.4 microM and a Hill coefficient of 2.32. Inhibition by curcumin was significantly enhanced by repeated depolarization; however, this agent did not alter the voltage-dependence of steady-state inactivation. Kv1.4 is the first voltage-gated ion channel demonstrated to be inhibited by curcumin. Furthermore, these results identify curcumin as one of the most potent antagonists of these K+ channels identified thus far. It remains to be seen whether any of the therapeutic actions of curcumin might originate with its ability to inhibit Kv1.4 or other voltage-gated K+ channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号