首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1121篇
  免费   14篇
  国内免费   34篇
  2023年   3篇
  2022年   5篇
  2021年   3篇
  2020年   6篇
  2019年   14篇
  2018年   7篇
  2017年   14篇
  2016年   4篇
  2015年   13篇
  2014年   61篇
  2013年   62篇
  2012年   66篇
  2011年   76篇
  2010年   89篇
  2009年   41篇
  2008年   46篇
  2007年   56篇
  2006年   58篇
  2005年   30篇
  2004年   33篇
  2003年   35篇
  2002年   21篇
  2001年   8篇
  2000年   20篇
  1999年   29篇
  1998年   17篇
  1997年   30篇
  1996年   14篇
  1995年   22篇
  1994年   35篇
  1993年   27篇
  1992年   19篇
  1991年   18篇
  1990年   14篇
  1989年   14篇
  1988年   8篇
  1987年   10篇
  1986年   18篇
  1985年   20篇
  1984年   19篇
  1983年   10篇
  1982年   20篇
  1981年   13篇
  1980年   15篇
  1979年   14篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1973年   2篇
  1970年   1篇
排序方式: 共有1169条查询结果,搜索用时 15 毫秒
121.
Zinc may play an important role in the pathogenesis of Alzheimer's disease (AD) through influencing the conformation and neurotoxicity of amyloid beta-proteins (Abeta). Zn(2+) induces rapid aggregation of synthetic or endogenous Abeta in a pH-dependent fashion. Here we show for the first time that Zn(2+)-induced aggregation of Abeta (10-21) potentiates its action on outward potassium currents in hippocampal CA1 pyramidal neurons. Using the whole-cell voltage-clamp technique, we showed that Abeta (10-21) blocked the fast-inactivating outward potassium current (I(A)) in a concentration- and aggregation-dependent manner, but with no effect on the delayed rectifier potassium current (I(K)). Both the unaggregated and aggregated forms of Abeta (10-21) significantly shifted the activation curve and the inactivation curve of I(A) to more negative potentials. But the aggregated form has more effects than the unaggregated form. These data indicated that aggregation of amyloid fragments by zinc ions is required in order to obtain full modulatory effects on potassium channel currents.  相似文献   
122.
Using a catalytic amount of potassium persulfate (1.48 x 10(-4)M), eight different seed gums were fully hydrolyzed on alumina support under microwave irradiation. The hydrolysis time varied between 1.33 and 2.33 min depending upon the seed gum structure. The used solid support could be easily separated from the hydrolyzates and recycled. However, under microwave field in an aqueous medium, the same amount of persulfate was unable to hydrolyze the seed gums. Solid-supported microwave hydrolysis has been compared with the microwave-enhanced aqueous hydrolysis (using K2S2O8 or 0.1N H2SO4) and also with the conventional hydrolysis procedures.  相似文献   
123.
Mitochondrial dysfunction has been widely associated with programmed cell death. Studies of intact cells are important for the understanding of the process of cell death and its relation to mitochondrial physiology. Using cytofluorometric approaches we studied the mitochondrial behavior in an erythroleukemic cell line. The effects of protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP), potassium exchanger (nigericin), potassium ionophore (valinomycin), Na+K+-ATPase inhibitor (ouabain) and mitochondrial permeability transition pore inhibitor (cyclosporin A) were evaluated. Cyclosporin A (CSA) was very effective in attenuating the disruption of inner mitochondrial membrane potential induced by CCCP. However, CSA failed to protect the loss of inner mitochondrial membrane potential induced by potassium intracellular flux manipulation. Our findings suggest that mitochondrial cyclophilin is not involved in the cell events mediated by deregulation of potassium flux, underlining the need for further studies in intact tumor cells for a better understanding of the involvement of mitochondria physiology in cell death events.  相似文献   
124.
Two trials were conducted to determine the effect of sudden decrease in salinity of raw and potassium-fortified inland saline water on western king prawn Penaeus latisulcatus osmoregulation, ionoregulation and condition. Prawns were subjected to salinity decrease over 1 h from 32 to 25 ppt in the first trial and from 27 to 20 ppt in the second trial in three water types: inland saline water with potassium fortified to 100% and 80% of the marine water concentration (IS100, IS80), and raw inland saline water (ISW). In the first trial condition and ingestion rate were monitored over 19 days following salinity change. In the second trial condition, haemolymph osmo- and iono-regulation were recorded over 48 h following salinity change. In the first trial, 100% mortality was observed in ISW by day 13, with final survival 94% in IS80 and 100% in IS100. Tail muscle moisture content increased significantly (P < 0.05) over time in both trials and in all water types, suggesting loss of energy reserves. In the second trial, serum osmolality, sodium concentration and osmoregulatory capacity decreased following salinity change, stabilising by 24 h in IS100 and IS80 but continuing to decrease till 48 h in ISW, suggesting partial breakdown of osmoregulatory function in the potassium-deficient medium. Prawns were stronger regulators of divalent than monovalent cations. These trials demonstrate that potassium-deficient inland saline water requires fortification with potassium to allow prawn survival and efficient osmoregulation.  相似文献   
125.
The α9β1 integrin accelerates cell migration through binding of the α9 cytoplasmic domain to SSAT, which catalyzes the catabolism of higher order polyamines, spermidine and spermine, to the lower order polyamine, putrescine. SSAT levels were downregulated at both the mRNA and protein levels by shRNA-mediated simultaneous knockdown of MMP-9 and uPAR/cathepsin B. In addition, we noted a prominent reduction in the expression of SSAT with MMP-9 and uPAR/cathepsin B knockdown in the tumor regions of 5310 injected nude mice brains. Further, SSAT knockdown in glioma xenograft cells significantly reduced their migration potential. Interestingly, MMP-9, uPAR and cathepsin B overexpression in these xenograft cells significantly elevated SSAT mRNA and protein levels. The migratory potential of MMP-9/uPAR/cathepsin B-overexpressed 4910 and 5310 cells was not affected by either glybenclamide (Kir 6.x inhibitor) or tertiapin-Q (Kir 1.1 and 3.x inhibitor) but instead was significantly inhibited by either barium or Kir4.2 siRNA treatments. Co-localization of α9 integrin with Kir4.2 was observed in both 4910 and 5310 xenograft cells. However, MMP-9 and uPAR/cathepsin B knockdown in these cells prominently reduced the co-localization of α9 with Kir4.2. Taken together, our results clearly demonstrate that α9β1 integrin-mediated cell migration utilizes SSAT and the Kir4.2 potassium channel pathway, and inhibition of the migratory potential of these glioma xenograft cells by simultaneous knockdown of MMP-9 and uPAR/cathepsin B could be attributed to the reduced SSAT levels and co-localization of α9 integrin with Kir4.2 inward rectifier potassium channels.  相似文献   
126.
Large conductance, Ca(2+)- and voltage-gated K(+) (BK) channel proteins are ubiquitously expressed in cell membranes and control a wide variety of biological processes. Membrane cholesterol regulates the activity of membrane-associated proteins, including BK channels. Cholesterol modulation of BK channels alters action potential firing, colonic ion transport, smooth muscle contractility, endothelial function, and the channel alcohol response. The structural bases underlying cholesterol-BK channel interaction are unknown. Such interaction is determined by strict chemical requirements for the sterol molecule, suggesting cholesterol recognition by a protein surface. Here, we demonstrate that cholesterol action on BK channel-forming Cbv1 proteins is mediated by their cytosolic C tail domain, where we identified seven cholesterol recognition/interaction amino acid consensus motifs (CRAC4 to 10), a distinct feature of BK proteins. Cholesterol sensitivity is provided by the membrane-adjacent CRAC4, where Val-444, Tyr-450, and Lys-453 are required for cholesterol sensing, with hydrogen bonding and hydrophobic interactions participating in cholesterol location and recognition. However, cumulative truncations or Tyr-to-Phe substitutions in CRAC5 to 10 progressively blunt cholesterol sensitivity, documenting involvement of multiple CRACs in cholesterol-BK channel interaction. In conclusion, our study provides for the first time the structural bases of BK channel cholesterol sensitivity; the presence of membrane-adjacent CRAC4 and the long cytosolic C tail domain with several other CRAC motifs, which are not found in other members of the TM6 superfamily of ion channels, very likely explains the unique cholesterol sensitivity of BK channels.  相似文献   
127.
M-channels are voltage-gated potassium channels that regulate cell excitability. They are heterotetrameric assemblies of Kv7.2 and Kv7.3 subunits. Their opening requires the presence of the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)). However, the specificity of PI(4,5)P(2) as a binding and activating ligand is unknown. Here, we tested the ability of different phosphoinositides and lipid phosphates to activate or bind to M-channel proteins. Activation of functional channels was measured in membrane patches isolated from cells coexpressing Kv7.2 and Kv7.3 subunits. Channels were activated to similar extents (maximum open probability of ~0.8 at 0 mV) by 0.1-300 μM dioctanoyl homologs of the three endogenous phosphoinositides, PI(4)P, PI(4,5)P(2), and PI(3,4,5)P(3), with sensitivity increasing with increasing numbers of phosphates. Non-acylated inositol phosphates had no effect up to 100 μM. Channels were also activated with increasing efficacy by 1-300 μM concentrations of the monoacyl monophosphates fingolimod phosphate, sphingosine 1-phosphate, and lysophosphatidic acid but not by phosphate-free fingolimod or sphingosine or by phosphate-masked phosphatidylcholine or phosphatidylglycerol. An overlay assay confirmed that a fusion protein containing the full-length C terminus of Kv7.2 could bind to a broad range of phosphoinositides and phospholipids. A mutated Kv7.2 C-terminal construct with reduced sensitivity to PI(4,5)P showed significantly less binding to most polyphosphoinositides. We concluded that M-channels bind to, and are activated by, a wide range of lipid phosphates, with a minimum requirement for an acyl chain and a phosphate headgroup. In this, they more closely resemble inwardly rectifying Kir6.2 potassium channels than the more PI(4,5)P(2)-specific Kir2 channels. Notwithstanding, the data also support the view that the main endogenous activator of M-channels is PI(4,5)P(2).  相似文献   
128.
Protein palmitoylation is rapidly emerging as an important determinant in the regulation of ion channels, including large conductance calcium-activated potassium (BK) channels. However, the enzymes that control channel palmitoylation are largely unknown. Indeed, although palmitoylation is the only reversible lipid modification of proteins, acyl thioesterases that control ion channel depalmitoylation have not been identified. Here, we demonstrate that palmitoylation of the intracellular S0-S1 loop of BK channels is controlled by two of the 23 mammalian palmitoyl-transferases, zDHHC22 and zDHHC23. Palmitoylation by these acyl transferases is essential for efficient cell surface expression of BK channels. In contrast, depalmitoylation is controlled by the cytosolic thioesterase APT1 (LYPLA1), but not APT2 (LYPLA2). In addition, we identify a splice variant of LYPLAL1, a homolog with ~30% identity to APT1, that also controls BK channel depalmitoylation. Thus, both palmitoyl acyltransferases and acyl thioesterases display discrete substrate specificity for BK channels. Because depalmitoylated BK channels are retarded in the trans-Golgi network, reversible protein palmitoylation provides a critical checkpoint to regulate exit from the trans-Golgi network and thus control BK channel cell surface expression.  相似文献   
129.
Scorpion venoms are a rich source of K(+) channel-blocking peptides. For the most part, they are structurally related small disulfide-rich proteins containing a conserved pattern of six cysteines that is assumed to dictate their common three-dimensional folding. In the conventional pattern, two disulfide bridges connect an α-helical segment to the C-terminal strand of a double- or triple-stranded β-sheet, conforming a cystine-stabilized α/β scaffold (CSα/β). Here we show that two K(+) channel-blocking peptides from Tityus scorpions conserve the cysteine spacing of common scorpion venom peptides but display an unconventional disulfide pattern, accompanied by a complete rearrangement of the secondary structure topology into a CS helix-loop-helix fold. Sequence and structural comparisons of the peptides adopting this novel fold suggest that it would be a new elaboration of the widespread CSα/β scaffold, thus revealing an unexpected structural versatility of these small disulfide-rich proteins. Acknowledgment of such versatility is important to understand how venom structural complexity emerged on a limited number of molecular scaffolds.  相似文献   
130.
Voltage-gated K(+) channels composed of Kv7.2 and Kv7.3 are the predominant contributors to the M-current, which plays a key role in controlling neuronal activity. Various lines of evidence have indicated that Kv7.2 and Kv7.3 form a heteromeric channel. However, the subunit stoichiometry and arrangement within this putative heteromer are so far unknown. Here, we have addressed this question using atomic force microscopy imaging of complexes between isolated Kv7.2/Kv7.3 channels and antibodies to epitope tags on the two subunits, Myc on Kv7.2 and HA on Kv7.3. Initially, tsA 201 cells were transiently transfected with equal amounts of cDNA for the two subunits. The heteromer was isolated through binding of either tag to immunoaffinity beads and then decorated with antibodies to the other tag. In both cases, the distribution of angles between pairs of bound antibodies had two peaks, at around 90° and around 180°, and in both cases the 90° peak was about double the size of the 180° peak. These results indicate that the Kv7.2/Kv7.3 heteromer generated by cells expressing approximately equal amounts of the two subunits assembles as a tetramer with a predominantly 2:2 subunit stoichiometry and with a random subunit arrangement. When the DNA ratio for the two subunits was varied, copurification experiments indicated that the subunit stoichiometry was variable and not fixed at 2:2. Hence, there are no constraints on either the subunit stoichiometry or the subunit arrangement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号