首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1121篇
  免费   14篇
  国内免费   34篇
  2023年   3篇
  2022年   5篇
  2021年   3篇
  2020年   6篇
  2019年   14篇
  2018年   7篇
  2017年   14篇
  2016年   4篇
  2015年   13篇
  2014年   61篇
  2013年   62篇
  2012年   66篇
  2011年   76篇
  2010年   89篇
  2009年   41篇
  2008年   46篇
  2007年   56篇
  2006年   58篇
  2005年   30篇
  2004年   33篇
  2003年   35篇
  2002年   21篇
  2001年   8篇
  2000年   20篇
  1999年   29篇
  1998年   17篇
  1997年   30篇
  1996年   14篇
  1995年   22篇
  1994年   35篇
  1993年   27篇
  1992年   19篇
  1991年   18篇
  1990年   14篇
  1989年   14篇
  1988年   8篇
  1987年   10篇
  1986年   18篇
  1985年   20篇
  1984年   19篇
  1983年   10篇
  1982年   20篇
  1981年   13篇
  1980年   15篇
  1979年   14篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1973年   2篇
  1970年   1篇
排序方式: 共有1169条查询结果,搜索用时 31 毫秒
101.
Small molecules that correct protein misfolding and misprocessing defects offer a potential therapy for numerous human diseases. However, mechanisms underlying pharmacological correction of such defects, especially in heteromeric complexes with structurally diverse constituent proteins, are not well understood. Here we investigate how two chemically distinct compounds, glibenclamide and carbamazepine, correct biogenesis defects in ATP-sensitive potassium (KATP) channels composed of sulfonylurea receptor 1 (SUR1) and Kir6.2. We present evidence that despite structural differences, carbamazepine and glibenclamide compete for binding to KATP channels, and both drugs share a binding pocket in SUR1 to exert their effects. Moreover, both compounds engage Kir6.2, in particular the distal N terminus of Kir6.2, which is involved in normal channel biogenesis, for their chaperoning effects on SUR1 mutants. Conversely, both drugs can correct channel biogenesis defects caused by Kir6.2 mutations in a SUR1-dependent manner. Using an unnatural, photocross-linkable amino acid, azidophenylalanine, genetically encoded in Kir6.2, we demonstrate in living cells that both drugs promote interactions between the distal N terminus of Kir6.2 and SUR1. These findings reveal a converging pharmacological chaperoning mechanism wherein glibenclamide and carbamazepine stabilize the heteromeric subunit interface critical for channel biogenesis to overcome defective biogenesis caused by mutations in individual subunits.  相似文献   
102.
为探讨钾肥类型对菜心(Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee)的作用效应,研究了不同钾肥类型和水平对菜心生长、细胞保护酶和内源激素的影响。结果表明,氯化钾或硫酸钾处理可提高菜心叶片的POD 和CAT 活性、IAA 和GA3 含量,降低MDA 含量,提高菜薹产量。随着钾水平的提高,叶片IAA 和GA3 含量、POD 和CAT 活性以及菜薹质量明显提高,MDA 含量降低。当施钾90 kg hm-2 时,叶片的GA3 和IAA 含量显著下降,而POD 活性和菜薹产量没有显著变化。在相同水平下,氯化钾与硫酸钾对植株生长、菜薹产量、叶片GA3 含量的影响不显著。当施钾0~90 kg hm-2 时,氯化钾处理的叶片POD 活性显著高于硫酸钾处理;而施钾135~180 kg hm-2 时,氯化钾处理的叶片POD 活性则显著低于硫酸钾处理。除了90 kg hm-2 氯化钾处理的CAT 活性和45 kg hm-2 氯化钾处理的MDA 含量低于硫酸钾处理以及90 kg hm-2 和180 kg hm-2 氯化钾处理的IAA 含量高于硫酸钾处理的外,相同水平氯化钾和硫酸钾处理的CAT 活性、MDA 含量和IAA 含量没有显著差异。可见,钾肥类型对菜心的活性氧代谢系统及内源激素含量有一定的影响,但氯化钾与硫酸钾对菜心的施用效果相当,生产上可采用氯化钾代替硫酸钾以节约肥料成本,K2O 施用量以90 kg hm-2 为宜。  相似文献   
103.
We have developed a red-emitting fluorescent K(+) probe, B3TAC, which also shows a wavelength shift upon binding to K(+). The probe was synthesized by conjugating a cryptand-based chelator, 2-triazacryptand [2,2,3]-1-(2-methoxyethoxy)benzene (TAC), to position 3 of the BODIPY fluorophore through a styryl linker. In water-acetonitrile mixed solvent, it responded to K(+) in the physiological concentration range with high selectivity over Na(+) and other metal ions. B3TAC is potentially useful for measuring cellular K(+) ion concentration, as well as for simple, naked-eye detection of K(+) in solution.  相似文献   
104.
SO_2对胸主动脉血管平滑肌细胞钾离子通道的影响   总被引:1,自引:0,他引:1  
为了探讨二氧化硫(SO2)引起大鼠血管平滑肌的降压机制,采用急性酶分离法分离大鼠单个血管平滑肌细胞,运用全细胞膜片钳技术记录平滑肌细胞外向钾电流(IKv),观察SO2及其衍生物对平滑肌细胞膜钾电流的作用,从离子通道角度研究SO2对血压的影响。结果发现:SO2衍生物可使外向IKv显著增大,10μmol/L SO2衍生物可使电流-电压曲线(I-V曲线)显著上移,即增大IKv,且呈一定的电压依赖性,并且,SO2衍生物可使IKv增大呈现出剂量-效应关系。当使用5 mmol/L 4-氨基吡啶(4-AP)抑制IKv后,加入10μmol/L SO2衍生物,IKv有一定程度增加。TEA能抑制SO2衍生物对IKv的增大效应。10μmol/L SO2衍生物可使IKv的激活曲线显著向超极化方向移动,但并不影响其斜率因子。说明SO2衍生物作用于血管平滑肌细胞,可引起外向钾电流幅度增大,使钾电流提前激活,这是SO2及其衍生物降压的作用机制之一;TEA、4-AP对SO2衍生物引起的血管平滑肌细胞钾电流的增大具有拮抗作用。  相似文献   
105.
In the present study, the whole-cell patch-clamp technique was applied to follow the inhibitory effect of genistein — a tyrosine kinase inhibitor and a natural anticancer agent—on the activity of voltage-gated potassium channels Kv1.3 expressed in human T lymphocytes (TL). Obtained data provide evidence that genistein application in the concentration range of 1–80 μM reversibly decreased the whole-cell potassium currents in TL in a concentration-dependent manner to about 0.23 of the control value. The half-blocking concentration range of genistein was from 10 to 40 μM. The current inhibition was correlated in time with a significant decrease of the current activation rate. The steady-state activation of the currents was unchanged upon application of genistein, as was the inactivation rate. The inhibitory effect of genistein on the current amplitude and activation kinetics was voltage-independent. The current inhibition was not changed significantly in the presence of 1 mM of sodium orthovanadate, a tyrosine phosphatase inhibitor. Application of daidzein, an inactive genistein analogue, did not affect significantly either the current amplitudes or the activation kinetics. Possible mechanisms of the observed phenomena and their significance for genistein-induced inhibition of cancer cell proliferation are discussed.  相似文献   
106.
Flegelova H  Sychrova H 《FEBS letters》2005,579(21):4733-4738
Na(+)/H+exchangers form a broad family of transporters that mediate opposing fluxes of alkali metal cations and protons across cell membranes. They play multiple roles in different organisms (protection from toxic cations, regulation of cell volume or pH). Rat NHE2 exchanger was expressed in a Saccharomyces cerevisiae mutant strain lacking its own exporters of alkali metal cations. Though most of the overexpressed NHE2 remained entrapped in the secretory pathway, part of it reached the plasma membrane and mediated K+ efflux from the yeast. We demonstrate for the first time that a mammalian Na(+)/H+ exchanger transports alkali metal cations in yeast in the opposite direction than in mammalian cells, and that the substrate specificity of the rat NHE2 exchanger is limited only to potassium cations upon expression in yeast cells.  相似文献   
107.
Trafficking of the pore-forming α-subunits of large conductance calcium- and voltage-activated potassium (BK) channels to the cell surface represents an important regulatory step in controlling BK channel function. Here, we identify multiple trafficking signals within the intracellular RCK1-RCK2 linker of the cytosolic C terminus of the channel that are required for efficient cell surface expression of the channel. In particular, an acidic cluster-like motif was essential for channel exit from the endoplasmic reticulum and subsequent cell surface expression. This motif could be transplanted onto a heterologous nonchannel protein to enhance cell surface expression by accelerating endoplasmic reticulum export. Importantly, we identified a human alternatively spliced BK channel variant, hSloΔ579–664, in which these trafficking signals are excluded because of in-frame exon skipping. The hSloΔ579–664 variant is expressed in multiple human tissues and cannot form functional channels at the cell surface even though it retains the putative RCK domains and downstream trafficking signals. Functionally, the hSloΔ579–664 variant acts as a dominant negative subunit to suppress cell surface expression of BK channels. Thus alternative splicing of the intracellular RCK1-RCK2 linker plays a critical role in determining cell surface expression of BK channels by controlling the inclusion/exclusion of multiple trafficking motifs.  相似文献   
108.
Reactive oxygen species (ROS) are essential for development and stress signaling in plants. They contribute to plant defense against pathogens, regulate stomatal transpiration, and influence nutrient uptake and partitioning. Although both Ca2+ and K+ channels of plants are known to be affected, virtually nothing is known of the targets for ROS at a molecular level. Here we report that a single cysteine (Cys) residue within the Kv-like SKOR K+ channel of Arabidopsis thaliana is essential for channel sensitivity to the ROS H2O2. We show that H2O2 rapidly enhanced current amplitude and activation kinetics of heterologously expressed SKOR, and the effects were reversed by the reducing agent dithiothreitol (DTT). Both H2O2 and DTT were active at the outer face of the membrane and current enhancement was strongly dependent on membrane depolarization, consistent with a H2O2-sensitive site on the SKOR protein that is exposed to the outside when the channel is in the open conformation. Cys substitutions identified a single residue, Cys168 located within the S3 α-helix of the voltage sensor complex, to be essential for sensitivity to H2O2. The same Cys residue was a primary determinant for current block by covalent Cys S-methioylation with aqueous methanethiosulfonates. These, and additional data identify Cys168 as a critical target for H2O2, and implicate ROS-mediated control of the K+ channel in regulating mineral nutrient partitioning within the plant.  相似文献   
109.
Kir3 channels control heart rate and neuronal excitability through GTP-binding (G) protein and phosphoinositide signaling pathways. These channels were the first characterized effectors of the βγ subunits of G proteins. Because we currently lack structures of complexes between G proteins and Kir3 channels, their interactions leading to modulation of channel function are not well understood. The recent crystal structure of a chimera between the cytosolic domain of a mammalian Kir3.1 and the transmembrane region of a prokaryotic KirBac1.3 (Kir3.1 chimera) has provided invaluable structural insight. However, it was not known whether this chimera could form functional K(+) channels. Here, we achieved the functional reconstitution of purified Kir3.1 chimera in planar lipid bilayers. The chimera behaved like a bona fide Kir channel displaying an absolute requirement for PIP(2) and Mg(2+)-dependent inward rectification. The channel could also be blocked by external tertiapin Q. The three-dimensional reconstruction of the chimera by single particle electron microscopy revealed a structure consistent with the crystal structure. Channel activity could be stimulated by ethanol and activated G proteins. Remarkably, the presence of both activated Gα and Gβγ subunits was required for gating of the channel. These results confirm the Kir3.1 chimera as a valid structural and functional model of Kir3 channels.  相似文献   
110.
Tandem of P domains in a weak inwardly rectifying K+ channel 1 (TWIK1) is a K+ channel that produces unusually low levels of current. Replacement of lysine 274 by a glutamic acid (K274E) is associated with stronger currents. This mutation would prevent conjugation of a small ubiquitin modifier peptide to Lys-274, a mechanism proposed to be responsible for channel silencing. However, we found no biochemical evidence of TWIK1 sumoylation, and we showed that the conservative change K274R did not increase current, suggesting that K274E modifies TWIK1 gating through a charge effect. Now we rule out an eventual effect of K274E on TWIK1 trafficking, and we provide convincing evidence that TWIK1 silencing results from its rapid retrieval from the cell surface. TWIK1 is internalized via a dynamin-dependent mechanism and addressed to the recycling endosomal compartment. Mutation of a diisoleucine repeat located in its cytoplasmic C terminus (I293A,I294A) stabilizes TWIK1 at the plasma membrane, resulting in robust currents. The effects of I293A,I294A on channel trafficking and of K274E on channel activity are cumulative, promoting even more currents. Activation of serotoninergic receptor 5-HT1R or adrenoreceptor α2A-AR stimulates TWIK1 but has no effect on TWIK1I293A,I294A, suggesting that Gi protein activation is a physiological signal for increasing the number of active channels at the plasma membrane.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号