首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8131篇
  免费   548篇
  国内免费   1304篇
  9983篇
  2023年   135篇
  2022年   250篇
  2021年   282篇
  2020年   256篇
  2019年   285篇
  2018年   249篇
  2017年   271篇
  2016年   337篇
  2015年   333篇
  2014年   384篇
  2013年   731篇
  2012年   310篇
  2011年   353篇
  2010年   276篇
  2009年   375篇
  2008年   344篇
  2007年   372篇
  2006年   378篇
  2005年   311篇
  2004年   317篇
  2003年   300篇
  2002年   283篇
  2001年   192篇
  2000年   172篇
  1999年   165篇
  1998年   152篇
  1997年   154篇
  1996年   123篇
  1995年   141篇
  1994年   159篇
  1993年   150篇
  1992年   133篇
  1991年   94篇
  1990年   81篇
  1989年   113篇
  1988年   76篇
  1987年   73篇
  1986年   65篇
  1985年   108篇
  1984年   148篇
  1983年   97篇
  1982年   100篇
  1981年   64篇
  1980年   51篇
  1979年   57篇
  1978年   40篇
  1977年   24篇
  1976年   33篇
  1974年   26篇
  1973年   20篇
排序方式: 共有9983条查询结果,搜索用时 15 毫秒
61.
酶分离纯化、固定化及催化性能提升一直是生物催化领域的研究热点和前沿,也是众多研究者致力解决的难点.研究和开发新型的纯化、固定化及提升催化性能的方法,降低纯化及储存等设备的要求及生产成本,对酶大规模应用具有重要意义.文中将铁蛋白(ferritin)与目标酶(地衣多糖酶)基因融合,经高效表达后,在细胞内 自发形成无载体固定...  相似文献   
62.
黄原胶寡糖生物活性的研究   总被引:4,自引:0,他引:4  
利用黄原胶降解菌Cellulom onassp.XT11生产的黄原胶降解酶,对黄原胶进行生物降解,生产具有不同粘度/还原末端比的黄原胶寡糖,并研究了黄原胶寡糖在清除羟基自由基、植物防卫反应中激活因子活性和对植物病原菌抑制能力等方面的生物活性,结果表明黄原胶寡糖具有清除羟基自由基能力,并能激活植物防卫系统以抵御病原菌的侵染,同时对野油菜黄单孢菌也具有抑菌活性。  相似文献   
63.
An endopolygalacturonase (endo-PG), was purified from the culture medium of a local isolate of Sclerotinia sclerotiorum with ammonium sulphate precipitation, cation exchange chromatography and gel filtration. The purified endo-PG had a molecular mass of approximately 18 kDa estimated by gel filtration. The isoelectric point was determined by isoelectric focusing to be approximately 8, suggesting that PG II possesses a net positive charge at physiological pHs. The pH optimum for the enzyme was at pH 4.5. The endo-PG showed essentially the same affinity for pectin and polygalacturonic acid as substrates. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
64.
The ability to predict protein function from structure is becoming increasingly important as the number of structures resolved is growing more rapidly than our capacity to study function. Current methods for predicting protein function are mostly reliant on identifying a similar protein of known function. For proteins that are highly dissimilar or are only similar to proteins also lacking functional annotations, these methods fail. Here, we show that protein function can be predicted as enzymatic or not without resorting to alignments. We describe 1178 high-resolution proteins in a structurally non-redundant subset of the Protein Data Bank using simple features such as secondary-structure content, amino acid propensities, surface properties and ligands. The subset is split into two functional groupings, enzymes and non-enzymes. We use the support vector machine-learning algorithm to develop models that are capable of assigning the protein class. Validation of the method shows that the function can be predicted to an accuracy of 77% using 52 features to describe each protein. An adaptive search of possible subsets of features produces a simplified model based on 36 features that predicts at an accuracy of 80%. We compare the method to sequence-based methods that also avoid calculating alignments and predict a recently released set of unrelated proteins. The most useful features for distinguishing enzymes from non-enzymes are secondary-structure content, amino acid frequencies, number of disulphide bonds and size of the largest cleft. This method is applicable to any structure as it does not require the identification of sequence or structural similarity to a protein of known function.  相似文献   
65.
Pseudouridine, one major RNA modification, is catabolized into uracil and ribose-5′-phosphate by two sequential enzymatic reactions. In the first step, pseudouridine kinase (PUKI) phosphorylates pseudouridine to pseudouridine 5′-monophosphate. High-fidelity catalysis of pseudouridine by PUKI prevents possible disturbance of in vivo pyrimidine homeostasis. However, the molecular basis of how PUKI selectively phosphorylates pseudouridine over uridine with >100-fold greater efficiency despite minor differences in their Km values has not been elucidated. To investigate this selectivity, in this study we determined the structures of PUKI from Escherichia coli strain B (EcPUKI) in various ligation states. The structure of EcPUKI was determined to be similar to PUKI from Arabidopsis thaliana, including an α/β core domain and β-stranded small domain, with dimerization occurring via the β-stranded small domain. In a binary complex, we show that Ser30 in the substrate-binding loop of the small domain mediates interactions with the hallmark N1 atom of pseudouridine nucleobase, causing conformational changes in its quaternary structure. Kinetic and fluorescence spectroscopic analyses also showed that the Ser30-mediated interaction is a prerequisite for conformational changes and subsequent catalysis by EcPUKI. Furthermore, S30A mutation or EcPUKI complexed with other nucleosides homologous to pseudouridine but lacking the pseudouridine-specific N1 atom did not induce such conformational changes, demonstrating the catalytic significance of the proposed Ser30-mediated interaction. These analyses provide structural and functional evidence for a pseudouridine-dependent conformational change of EcPUKI and its functional linkage to catalysis.  相似文献   
66.
Summary Two thymidine kinase isoenzymes, TK 3 and TK 4, from mononuclear leucocytes from a patient with acute monocytic leukemia, were purified and characterized in regard to the molecular weights and kinetic properties.The molecular weights of TK 3 and TK 4 were 60 000 and 45 000, respectively. In the presence of 2 mM ATP, the molecular weight of TK 3 increased to 200 000, whereas the molecular weight of TK 4 was unchanged.Studies of the kinetic properties showed clear differences between TK 3 and TK 4. With thymidine as substrate, TK 3 showed biphasic kinetics with a Km of 22 µM, and TK 4 showed Michaelis-Menten kinetics with a Km of 0.33 µM With ATP as substrate, TK 3 showed Michaelis-Menten kinetics with a Km of 100 µM, and TK 4 showed biphasic kinetics with a Km of 3.5 µM. With dTTP as inhibitor, TK 3 showed cooperative inhibition kinetics, and TK 4 showed non-cooperative competitive inhibition kinetics. The dTTP concentration at 50% inhibition was 75 µM for TK 3 but 380 µM for TK 4.Comparison of the molecular weights and the kinetic properties of TK 3 and TK 4 with the corresponding data previously obtained for TK 1 and TK 2 from normal human lymphocytes indicate the existence of four thymidine kinase isoenzymes in human leucocytes.  相似文献   
67.
68.
Catechol oxidase was distributed in soluble and particulate fractions of Solanum melongena. The purified preparation appears to be homogeneous by polyacrylamide gel electrophoresis. The enzyme shows two pH maxima—with catechol, 6.5 and 7.5; and with dopa, 6.5 and 7.9. The latent form of the enzyme does not occur in S. melongena. The preparation resembles the enzyme from other sources in substrate specificity towards various mono- and diphenols, having a higher affinity for catechol than dopa; this tendency increases on purification. The cresolase activity decreases with purification and a lag period with p-cresol is observed. The oxidation of mono- and diphenols is inhibited by ascorbic acid, sulphydryl compounds and chelating agents.  相似文献   
69.
SARS-CoV-2, the newly identified human coronavirus causing severe pneumonia pandemic, was probably originated from Chinese horseshoe bats. However, direct transmission of the virus from bats to humans is unlikely due to lack of direct contact, implying the existence of unknown intermediate hosts. Angiotensin converting enzyme 2 (ACE2) is the receptor of SARS-CoV-2, but only ACE2s of certain species can be utilized by SARS-CoV-2. Here, we evaluated and ranked the receptor-utilizing capability of ACE2s from various species by phylogenetic clustering and sequence alignment with the currently known ACE2s utilized by SARS-CoV-2. As a result, we predicted that SARS-CoV-2 tends to utilize ACE2s of various mammals, except murines, and some birds, such as pigeon. This prediction may help to screen the intermediate hosts of SARS-CoV-2.  相似文献   
70.
In this study, an ion exchange resin-based downstream-processing concept for imine reductase (IRED)-catalyzed reactions was investigated. As a model reaction, 2-methylpyrroline was converted to its corresponding product (S)-2-methylpyrrolidine with >99% of conversion by the (S)-selective IRED from Paenibacillus elgii B69. Under optimized reaction conditions full conversion was achieved using a substrate concentration of 150 and 500 mmol/L of d -glucose. Seven commercially available cation- and anion-exchange resins were studied with respect to their ability to recover the product from the reaction solution. Without any pretreatment, cation-exchange resins Amberlite IR-120(H), IRN-150, Dowex Monosphere 650C, and Dowex Marathon MSC showed high recovery capacities (up to >90%). A 150-ml preparative scale reaction was performed yielding ~1 g hydrochloride salt product with >99% purity. Any further purification steps, for example, by column chromatography or recrystallization, were not required.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号