首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10619篇
  免费   493篇
  国内免费   941篇
  2024年   34篇
  2023年   201篇
  2022年   274篇
  2021年   338篇
  2020年   343篇
  2019年   303篇
  2018年   312篇
  2017年   225篇
  2016年   305篇
  2015年   460篇
  2014年   517篇
  2013年   610篇
  2012年   384篇
  2011年   450篇
  2010年   412篇
  2009年   462篇
  2008年   454篇
  2007年   446篇
  2006年   471篇
  2005年   455篇
  2004年   427篇
  2003年   335篇
  2002年   388篇
  2001年   252篇
  2000年   237篇
  1999年   231篇
  1998年   218篇
  1997年   222篇
  1996年   207篇
  1995年   206篇
  1994年   226篇
  1993年   193篇
  1992年   177篇
  1991年   148篇
  1990年   131篇
  1989年   116篇
  1988年   122篇
  1987年   86篇
  1986年   95篇
  1985年   86篇
  1984年   112篇
  1983年   63篇
  1982年   72篇
  1981年   50篇
  1980年   55篇
  1979年   49篇
  1978年   26篇
  1977年   21篇
  1976年   20篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
171.
Two thioredoxin cDNAs from soybean were isolated by screening an expression library using an anti-(plasma membrane) serum. The nucleotide sequences of the two cDNAs were found to be 89% identical. The polypeptides encoded by the two cDNAs, designated TRX1 and TRX2, contain a disulfide active site, as found in other thioredoxins. TRX1 was expressed as a fusion protein in Escherichia coli and shown to possess thiol-disufide interchange activity. Unlike other eukaryotic thioredoxins, these two soybean thioredoxins contain a putative transmembrane domain in their N-terminal regions. To determine subcellular location, the TRX1 was fused with a reporter epitope at its C-terminus and expressed in transgenic tobacco plants. The fusion protein was co-purified with plasma membrane markers 1,3-glucan synthase and vanadate-sensitive ATPase, indicating the plasma membrane location of TRX1. When the reporter epitope was inserted between the start codon and the transmembrane domain in the N-terminus, the fusion protein was found in the soluble fraction, possibly due to disruption of the transmembrane domain by the highly hydrophilic epitope sequence. Taken together, our results demonstrate that soybean TRX1 is a plasma membrane-bound thioredoxin, which is most likely anchored to the membrane through the N-terminal transmembrane domain. It is known that plant plasma membranes contain various proteins with thiol-disulfide interchange activity. The soybean thioredoxins reported here are the first group of such proteins to be characterized at the molecular level. However, the biological function of the plasma membrane-bound thioredoxin remains to be determined.  相似文献   
172.
Biosynthesis of polyamines in plants is controlled primarily by the enzymes ornithine decarboxylase (EC 4.1.1.17) and arginine decarboxylase (ADC: EC 4.1.1.19), which are responsible for the production of putrescine, and S -adenosyl-L-methionine (SAM) decarboxylase (EC 4.1.1.50) that is necessary for the formation of spermidine and spermine (Spm). Little is known about the metabolic or molecular mechanisms regulating the synthesis of these enzymes. We have studied the regulation of ADC synthesis by Spm in osmotically-stressed oat ( Avena sativa L. ev. Victory) leaves, using a polyclonal antibody to oat ADC and a cDNA clone encoding oat ADC. Treatment with Spm in combination with osmotic stress resulted in increased steady-state levels of ADC mRNA, yet the levels of ADC activity decreased. This absence of correlation is explained by the fact that Spm inhibits processing of the ADC proenzyme, which results in increased levels of this inactive ADC form and a consequent decrease in the ADC-processed form. Spermine treatment leads to delayed loss of chlorophyll in dark-incubated and osmotically-treated oat leaves. Thus, post-translational regulation of ADC synthesis by Spm may be important in explaining its anti-senescence properties.  相似文献   
173.
174.
Concanamycin 4-B, a macrolide antibiotic with an 18-membered lactone ring, is known as a specific inhibitor of the vacuolar type of H+-ATPase, as is bafilomycin A1. The drug was tested for its effect on regulation of the vacuolar pH (pHv) of internodal cells of a fresh water characean alga, Chara corallina, under normal conditions and under salt stress. The pHv was measured either on isolated vacuolar sap with a conventional pH electrode or directly by inserting a pH-sensitive glass microelectrode into the vacuole. Proton-pumping into tonoplast vesicles was almost completely inhibited by concanamycin 4-B at 1 nM. Concanamycin 4-B at 1 μM significantly increased pHv while bafilomycin A1 was ineffective when applied at 1 μM. Concanamycin 4-B did not affect pHv when applied at 0.1 μM and increasing the concentration to 10 μM did not amplify the degree of alkalization. Concanamycin 4-B also inhibited pHv regulation under NaCl stress. When Chara cells were treated with 100 mM NaCl, pHv promptly increased and then recovered to the original level. The reacidification was completely inhibited by concanamycin 4-B (1 μM), suggesting that the reacidification was achieved by the H+-ATPase of the tonoplast.  相似文献   
175.
176.
利用人粒细胞集落刺激因子(hG-CSF)cDNA3′端非翻译区(3′-UTR)中存在的DraⅠ酶切位点,通过部分酶切与完全酶切,删除3′-UTR不同长度,构建了四种hG-CSFcDNA瞬时重组表达质粒。转染COS-7细胞后,生物活性测定结果提示,hG-CSFcDNA3′-UTR对其表达起负调控作用,其关键性序列位于紧接终止密码子TGA下游的65bp范围内,3′-UTR对hG-CSFcDNA表达的影响与转录水平的差别有一定关系。  相似文献   
177.
DNaseⅠ超敏感位点的研究能够发现潜在的调控基因转录活化的位点,比较正常人外周血有核细胞,淋巴瘤细胞株P3HR1和人鼻咽癌低分化磷癌细胞株HOnE1和HNE2中Ha-ras-1瘤基因的DNaseⅠ超敏感位点发现,只有HONE1和HNE2细胞基因组中存在一个DNaseⅠ超敏感位点,位于第一个外显子上游0.37kb处,上述结果提示正常白细胞和P3HR1细胞中Ha-ras-1基因处于失活状态,而在鼻咽癌细胞基因组中则处于活化状态,它的活化可能与0.37kb处的DNA序列有密切的关系。  相似文献   
178.
We investigated the relationships between social dominance,competition for food, and strategies of body mass and fat regulationin the European starling (Sturnus vulgaris). In birds housedin groups of three, subdominant birds stored more fat than dominants.A removal experiment established a causal link between socialdominance and fat reserves; in groups that had the dominantindividual removed, the remaining birds reduced body mass andfat, relative to control groups that had the subordinate removed.In a second experiment, we investigated the influences of degreeof competition for food and dominance on body mass and fat reserves.Birds under high competition increased fat reserves and tendedto have higher body mass than birds under low competition. Theincrease in fat reserves was higher in the subdominants thanin the dominants. These results are consistent with hypothesesconcerning dominance-dependent access to food; subdominant birds,or birds under increased competition, may store more fat asan insurance against periods when food cannot be obtained. However,relations between dominance, body mass, and fat reserves mayalso arise through other proximate factors relating to dominance-dependentcosts and benefits of fat storage, such as predation risk andenergetic expenditure.  相似文献   
179.
Summary Gene transfer techniques can be used to encode the production of a polypeptide product, such as human growth hormone (hGH), that is missing in an acquired or inherited disease state such as growth hormone deficiency. In one model system, engineered C2C12 myoblasts are injected intramuscularly into a mouse and subsequently secrete hGH into the circulation. In this regard, a gene-expression regulatory system that functions in myoblasts would be of interest. We demonstrate that theEscherichia coli lac operon system can be used to stringently regulate the expression of hGH in engineered C2C12 myoblasts in tissue culture. A DNA segment encoding hGH was linked to a DNA segment containing an SV40 enhancer and promoter. The latter components were positioned between two syntheticlac operators.Lac repressor expression was driven by a simian cytomegalovirus promoter. In transient co-transfection assays, hGH expression from cultured C2C12 myoblasts could be modulated up to 60-fold (P = 0.002) with the inducing agent, isopropyl-β-d-thiogalactoside (IPTG). In the absence of IPTG, hGH expression was almost fully repressed. These results show that the components of theE. coli lac operon provide a stringent regulatory system for use in myoblasts. The system might prove to be useful for the regulation of transferred genes in animals.  相似文献   
180.
Eicosanoids have been demonstrated to play a central role in immune regulation in mammals brought about by their direct effects on cells such as macrophages and lymphocytes or by their indirect effects via cytokines. Studies have shown that fish mononuclear phagocytes, granulocytes and thrombocytes synthesize and release both cyclooxygenase- and lipoxygenase-derived products such as prostaglandin E2, leukotriene B4 and lipoxin A4. Whether lymphocytes have the ability to generate leukotrienes and lipoxins is still unclear but they do appear to have 12-lipoxygenase activity that leads to the generation of 12-hydroxy fatty acid derivatives. As in mammals, leukotriene and lipoxin biosynthesis requires the presence of a 5-lipoxygenase activating protein-like molecule that is sensitive to the action of the specific inhibitor, MK-886. The prostaglandin-generating ability of trout macrophages can be altered by incubation with lipopolysaccharide suggesting the possible presence of an inducible cyclooxygenase activity. Prostaglandins have been found to suppress the mitogen-induced proliferation of trout leucocytes and the generation of humoral antibody and plasma cells both in vivo and in vitro. The lipoxygenase products, leukotriene B4 and lipoxin A4 have more variable effects ranging from inhibition to stimulation depending on the assay system employed. Overall, there is clear evidence that eicosanoids play a role in immune regulation in fish in a similar way to that reported in mammals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号