首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1114篇
  免费   84篇
  国内免费   182篇
  2024年   2篇
  2023年   22篇
  2022年   24篇
  2021年   25篇
  2020年   40篇
  2019年   42篇
  2018年   25篇
  2017年   33篇
  2016年   23篇
  2015年   42篇
  2014年   53篇
  2013年   63篇
  2012年   57篇
  2011年   68篇
  2010年   42篇
  2009年   73篇
  2008年   70篇
  2007年   69篇
  2006年   73篇
  2005年   69篇
  2004年   66篇
  2003年   36篇
  2002年   38篇
  2001年   33篇
  2000年   28篇
  1999年   27篇
  1998年   38篇
  1997年   33篇
  1996年   19篇
  1995年   15篇
  1994年   15篇
  1993年   14篇
  1992年   10篇
  1991年   17篇
  1990年   7篇
  1989年   15篇
  1988年   13篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   2篇
  1975年   1篇
  1971年   1篇
  1958年   1篇
排序方式: 共有1380条查询结果,搜索用时 15 毫秒
91.
Genetic variation in plants is known to influence arthropod assemblages and species interactions. However, these influences may be contingent upon local environmental conditions. Here, we examine how plant genotype-based trophic interactions and patterns of natural selection change across environments. Studying the cottonwood tree, Populus angustifolia, the galling aphid, Pemphigus betae and its avian predators, we used three common gardens across an environmental gradient to examine the effects of plant genotype on gall abundance, gall size, aphid fecundity and predation rate on galls. Three patterns emerged: (i) plant genotype explained variation in gall abundance and predation, (ii) G×E explained variation in aphid fecundity, and environment explained variation in gall abundance and gall size, (iii) natural selection on gall size changed from directional to stabilizing across environments.  相似文献   
92.
Question: Does the increase in Populus tremuloides cover within the Picea mariana–feathermoss domain enhance establishment and growth conditions for Abies balsamea regeneration? Location: Boreal forest of northwest Quebec, Canada. Method: To document the effect of Populus tremuloides on A. balsamea regeneration, mixed stands with a heterogeneous presence of P. tremuloides adjacent to Picea mariana‐dominated stands were selected. Abies balsamea regeneration, understorey environment and canopy composition were characterized from 531 sampling units distributed along transects covering the mixed–coniferous gradient. Abundance of understorey A. balsamea regeneration was described using three height groups: seedling (<30 cm), small sapling (30 to <100 cm) and tall sapling (100 to 300 cm). Growth characteristics were measured from 251 selected individuals of A. balsamea (<3 m). Results: Results showed that A. balsamea regeneration was generally more abundant when P. tremuloides was present in the canopy. Differences between seedling and sapling abundance along the mixed–coniferous gradient suggest that while establishment probably occurs over a wide range of substrates, the better growth conditions found under mixed stands ensure a higher survival rate for A. balsamea seedlings. Conclusions: The abundant A. balsamea regeneration observed within mixed stands of the Picea mariana–feathermoss domain suggests that the increase in P. tremuloides cover, favoured by intensive management practices and climatic change, could contribute to acceleration of the northward expansion of the A. balsamea–Betula papyrifera domain into the northern boreal forest dominated by Picea mariana.  相似文献   
93.
Questions: What was the tree species composition of forests prior to European settlement at the northern hardwood range limit in eastern Québec, Canada? What role did human activities play in the changes in forest composition in this region? Location: Northern range limit of northern hardwoods in the Lower St. Lawrence region of eastern Québec, Canada. Methods: We used early land survey records (1846–1949) of public lands to reconstruct pre‐settlement forest composition. The data consist of ranked tree species enumerations at points or for segments along surveyed lines, with enumerations of forest cover types and notes concerning disturbances. An original procedure was developed to weigh and combine these differing data types (line versus point observations; taxa versus cover enumerations). Change to present‐day forest composition was evaluated by comparing survey records with forest decadal surveys conducted by the government of Québec over the last 30 years (1980–2009). Results: Pre‐settlement dominance of conifers was strong and uniform across the study area, whereas dominance of maple and birches was patchy. Cedar and spruce were less likely to dominate with increasing altitude, whereas maple displayed the reverse trend. Frequency of disturbances, especially logging and fire, increased greatly after 1900. Comparison of survey records and modern plots showed general increases for maple (mentioned frequency increased by 39%), poplar (36%) and paper birch (31%). Considering only taxa ranked first by surveyors, cedar displayed the largest decrease (19%), whereas poplar (15%) and maple (9%) increased significantly. Conclusions: These changes in forest composition can be principally attributed to clear‐cutting and colonization fire disturbances throughout the 20th century, and mostly reflected the propensity of taxa to expand (maples/aspen) or decline (cedar/spruce) with increased disturbance frequency. Québec's land survey archives provide an additional data source to reconstruct and validate our knowledge of North America's pre‐settlement temperate and sub‐boreal forests.  相似文献   
94.
I evaluated soil application of nitrogen fertilizer to 1‐year‐old, flood‐irrigated Salix exigua willows and Populus fremontii cottonwoods as a method for increasing arthropod abundances and biomasses (wet masses) available to insectivorous birds. Shrubs and trees, planted near the lower Colorado River in southeast California for wildlife habitat, were fertilized during April 2008. I collected spiders and insects monthly during the following May–August from unfertilized and fertilized plants by fumigating branches with insecticide. Percentages of N in leaves, and to a lesser extent percentages of water in branches, were greater on fertilized plants (averaging 2.5% N of dry mass) compared with unfertilized plants (1.6% N) in both species. Most arthropods collected were predaceous Araneae (44% of abundance, 52% of biomass) followed by phytophagous Homoptera (34%, 11%) and predaceous or phytophagous Heteroptera (10%, 11%). Abundances and biomasses of Araneae, Heteroptera, and all Arthropoda across months did not differ between unfertilized and fertilized plants in either species controlling for masses of sampled branches. In contrast, biomasses of Homoptera, mostly Cicadellidae followed by Aphididae, were 197% greater on fertilized willows and 228% greater on fertilized cottonwoods. Greater biomasses on fertilized plants were consistent across months. Biomasses of homopterans on branches of each species also increased as leaf N‐concentrations increased. Applying N‐fertilizer to willows and cottonwoods can increase leaf N‐contents and abundances and biomasses of Homoptera. Increased homopteran biomass on N‐fertilized plants may in turn diversify prey available to insectivorous birds.  相似文献   
95.
The growing field of community and ecosystem genetics indicates that plant genotype and genotypic variation are important for structuring communities and ecosystem processes. Little is known, however, regarding the effects of stand gene diversity on soil communities and processes under field conditions. Utilizing natural genetic variation occurring in Populus spp. hybrid zones, we tested the hypothesis that stand gene diversity structures soil microbial communities and influences soil nutrient pools. We found significant unimodal patterns relating gene diversity to soil microbial community composition, microbial exoenzyme activity of a carbon-acquiring enzyme, and availability of soil nitrogen. Multivariate analyses indicate that this pattern is due to the correlation between gene diversity, plant secondary chemistry, and the composition of the microbial community that impacts the availability of soil nitrogen. Together, these data from a natural system indicate that stand gene diversity may affect soil microbial communities and soil processes in ways similar to species diversity (i.e., unimodal patterns). Our results further demonstrate that the effects of plant genetic diversity on other organisms may be mediated by plant functional trait variation.  相似文献   
96.
97.
The brown alga Agarum clathratum (Dumortier) is the only large, perennial, fleshy macrophyte commonly found on urchin‐dominated barrens in the northwestern North Atlantic. We examined the spatial and temporal stability of A. clathratum stands and their impact on algal recruitment in the Mingan Islands, northern Gulf of St. Lawrence. The stands were highly stable in space and time, with only small intersite variations. The percent cover of A. clathratum in 144‐m2 areas increased by 6.5%–11.4% over a 2‐year period, and most changes in abundance occurred at the edge of the stands. The surface area of small (<13 m2) single stands of A. clathratum increased by approximately 1.8%·month?1, although marked increases (>95%) occurred during winter, largely because adjacent stands merged into larger single stands. Mature stands of A. clathratum appear to enhance algal recruitment, as juvenile A. clathratum and the understory red alga Ptilota serrata (Kützing) were orders of magnitude more abundant inside than outside the stands. The experimental removal of the A. clathratum canopy (1‐m2 portions) had no long‐term effect on the abundance of A. clathratum, which within 14 months had recolonized most of the cleared areas. In contrast to juvenile A. clathratum, the abundance of P. serrata rapidly decreased after canopy removal. Our results demonstrate that A. clathratum stands are a stable component of urchin barrens in spite of the heavy grazing that typically occurs there. Maintenance and expansion of A. clathratum stands and associated flora appear to depend on positive interactions with self‐defended adult A. clathratum.  相似文献   
98.
99.
100.
Plants defend themselves against the attack of natural enemies by using an array of both constitutively expressed and induced defenses. Long-lived woody perennials are overrepresented among plant species that show strong induced defense responses, whereas annual plants and crop species are underrepresented. However, most studies of plant defense genes have been performed on annual or short-lived perennial weeds or crop species. Here I use molecular population genetic methods to survey six wound-inducible protease inhibitors (PIs) in a long-lived woody, perennial plant species, the European aspen (Populus tremula), to evaluate the likelihood of either recurrent selective sweeps or balancing selection maintaining amino acid polymorphisms in these genes. The results show that none of the six PI genes have reduced diversities at synonymous sites, as would be expected in the presence of recurrent selective sweeps. However, several genes show some evidence of nonneutral evolution such as enhanced linkage disequilibrium and a large number of high-frequency-derived mutations. A group of at least four Kunitz trypsin inhibitor genes appear to have experienced elevated levels of nonsynonymous substitutions, indicating allelic turnover on an evolutionary timescale. One gene, TI1, has enhanced levels of intraspecific polymorphism at nonsynonymous sites and also has an unusual haplotype structure characterized by two divergent haplotypes occurring at roughly equal frequencies in the sample. One haplotype has very low levels of intraallelic nucleotide diversity, whereas the other haplotype has levels of diversity comparable to other genes in P. tremula. Patterns of sequence diversity at TI1 do not fit a simple model of either balancing selection or recurrent selective sweeps. This suggests that selection at TI1 is more complex, possibly involving allelic cycling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号