首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  24篇
  2011年   1篇
  2004年   2篇
  2001年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   3篇
  1983年   5篇
  1982年   1篇
  1981年   2篇
排序方式: 共有24条查询结果,搜索用时 14 毫秒
11.
3-Nitrocoumarin is described in the literature as a specific inhibitor of mammalian phospholipase-C and here we studied the effect of 3-nitrocoumarin on budding yeast phosphatidylinositol-specific phospholipase-C and its effect on yeast growth. 3-Nitrocoumarin is a powerful inhibitor in vitro of the yeast Plc1 protein with an IC(50) of 57 nM and it is also an inhibitor of yeast growth in minimal media at comparable concentrations. Moreover at the same concentration it inhibits the glucose-induced PI-turnover. Since the effects of 3-nitrocoumarin on yeast growth are superimposable on the growth phenotype caused by PLC1 gene deletion we can conclude that 3-nitrocoumarin is a specific and selective inhibitor of yeast phospholipase-C. In addition we show that 3-nitrocoumarin was also an effective inhibitor of the pathogenic yeast Candida albicans.  相似文献   
12.
This study describes effects of various peptides, neurotransmitters and cyclic nucleotides on brain polyphosphoinositide metabolism in vitro. The interconversion of the polyanionic inositol phospholipids was studied by incubation of a lysed crude mitochondrial/synaptosomal fraction with [gamma-32P]-ATP. The reference peptide ACTH1-24 stimulated the formation of radiolabelled phosphatidylinositol 4,5-diphosphate (TPI) and inhibited that of phosphatidic acid (PA). Substance P inhibited both TPI and PA labelling, whereas beta-endorphin inhibited that of PA without any effect on TPI. Morphine had no effect at any concentration tested, whereas high concentrations of naloxone inhibited the labelling of both PA and TPI. Naloxone did not counteract the effects of ACTH1-24. The other peptides tested (lysine 8-vasopressin and angiotensin II) were without any effect. Under the conditions used, adrenaline, noradrenaline and acetylcholine did not affect the labelling of the (poly)phosphoinositides. Both dopamine and serotonin, however, dose-dependently inhibited the formation of radiolabelled TPI and PA. Low concentrations of cAMP stimulated TPI, but higher concentrations had an overall inhibitory effect on the labelling of TPI, PA and especially phosphatidylinositol 4-phosphate (DPI). The cyclic nucleotide did not mediate or counteract the effects of ACTH, and cGMP was without any effect. These results are discussed in the light of current ideas on the mechanism of action of neuropeptides.  相似文献   
13.
In human type 2 diabetes, loss of glucose-stimulated insulin exocytosis from the pancreatic beta-cell is an early pathogenetic event. Mechanisms controlling insulin exocytosis are, however, not fully understood. We show here that inositol hexakisphosphate (InsP(6)), whose concentration transiently increases upon glucose stimulation, dose-dependently and differentially inhibits enzyme activities of ser/thr protein phosphatases in physiologically relevant concentrations. None of the hypoglycemic sulfonylureas tested affected protein phosphatase-1 or -2A activity at clinically relevant concentrations in these cells. Thus, an increase in cellular phosphorylation state, through inhibition of protein dephosphorylation by InsP(6), may be a novel regulatory mechanism linking glucose-stimulated polyphosphoinositide formation to insulin exocytosis in insulin-secreting cells.  相似文献   
14.
The influence of varying doses of streptozotocin and preventive insulin treatment on phospholipid metabolism in sciatic nerve in vitro from diabetic rats was studied. Animals were given 30, 45, and 60 mg/kg injections of streptozotocin and 10 weeks later nerves were removed and incubated in the presence of [32P]-orthophosphate. The quantity of isotope incorporated into phosphatidylinositol-4,5-bisphosphate (PIP2) was progressively greater with increasing drug dosage, whereas uptake of label into other phospholipids was unchanged. Rats were made diabetic and within 72 h were implanted with long-acting, insulin-containing osmotic minipumps and the incorporation of [32P]orthophosphate into phospholipids of intact and epineurium-free nerves was examined 8 weeks later. For whole nerve, increased labeling in nerves from diabetic animals occurred only in PIP2 and phosphatidylinositol-4-phosphate (PIP) and was completely prevented by insulin treatment. Isotope incorporation into polyphosphoinositides was also markedly elevated (greater than or equal to 100%) in desheathed diabetic nerves, but not in nerves from insulin-treated animals. Other phospholipids in epineurium-free nerves displayed some rise in isotope uptake, but the increases were not prevented by insulin treatment and appeared unrelated to hyperglycemia. Morphological examination of nerves extended previous findings that prolonged insulin treatment produces axonal degeneration. These observations indicate that abnormal nerve polyphosphoinositide metabolism is at least in part a consequence of hyperglycemia. The metabolic alterations may be intimately involved in reduced nerve conduction velocity, which is characteristic of diabetic neuropathy.  相似文献   
15.
Studies on Polyphosphoinositides in Developing Rat Brain   总被引:5,自引:5,他引:0  
Polyphosphoinositides in rat brain exist in two forms: the metabolically active form that is readily attacked by the polyphosphoinositide phosphohydrolases, and the inert form that is attacked by the enzymes at a slower rate. The two pools continue to increase even during the postweaning period, suggesting a role in glial as well as myelin development apart from their role in neurons.  相似文献   
16.
Studies using isolated sea urchin cortical vesicles have proven invaluable in dissecting mechanisms of Ca2+-triggered membrane fusion. However, only acute molecular manipulations are possible in vitro. Here, using selective pharmacological manipulations of sea urchin eggs ex vivo, we test the hypothesis that specific lipidic components of the membrane matrix selectively affect defined late stages of exocytosis, particularly the Ca2+-triggered steps of fast membrane fusion. Egg treatments with cholesterol-lowering drugs resulted in the inhibition of vesicle fusion. Exogenous cholesterol recovered fusion extent and efficiency in cholesterol-depleted membranes; α-tocopherol, a structurally dissimilar curvature analogue, selectively restored fusion extent. Inhibition of phospholipase C reduced vesicle phosphatidylethanolamine and suppressed both the extent and kinetics of fusion. Although phosphatidylinositol-3-kinase inhibition altered levels of polyphosphoinositide species and reduced all fusion parameters, sequestering polyphosphoinositides selectively inhibited fusion kinetics. Thus, cholesterol and phosphatidylethanolamine play direct roles in the fusion pathway, contributing negative curvature. Cholesterol also organizes the physiological fusion site, defining fusion efficiency. A selective influence of phosphatidylethanolamine on fusion kinetics sheds light on the local microdomain structure at the site of docking/fusion. Polyphosphoinositides have modulatory upstream roles in priming: alterations in specific polyphosphoinositides likely represent the terminal priming steps defining fully docked, release-ready vesicles. Thus, this pharmacological approach has the potential to be a robust high-throughput platform to identify molecular components of the physiological fusion machine critical to docking, priming, and triggered fusion.  相似文献   
17.
The accumulation of labelled inositol mono-, bis-, and trisphosphate in rat cerebral cortex slices was examined following preincubation with [3H]inositol. The muscarinic receptor agonist carbachol produced a rapid and sustained increased accumulation of each labelled inositol phosphate both in the presence and absence of 5 mM lithium. Lithium potentiated carbachol-stimulated accumulation of inositol monophosphate (EC50 0.5 mM) and inositol bisphosphate (EC50 4 mM) in a concentration-dependent manner. However, exposure to lithium in the presence of the muscarinic agonist produced a concentration- and time-dependent inhibition of inositol trisphosphate accumulation that was not related to receptor desensitisation. Although the present data do suggest that polyphosphoinositides are substrates for agonist-stimulated phospholipase C in brain, these results may not be entirely consistent with the production of inositol mono- and bisphosphate through inositol trisphosphate dephosphorylation. Furthermore, these data suggest site(s) additional to inositol monophosphatase that are affected by lithium.  相似文献   
18.
Synaptosomes have been isolated from rat cerebral cortex and labelled in vitro with [32P]orthophosphate and myo-[2-3H]inositol. Subsequent addition of the Ca2+ ionophore A23187 in the presence of 2 mM extrasynaptosomal Ca2+ raised intrasynaptosomal free [Ca2+] to greater than 2 microM from a resting level of 200 nM and led to rapid breakdown of polyphosphoinositides. This was accompanied by a small increase in the level of inositol monophosphate, greatly enhanced accumulation in inositol bisphosphate, but no detectable increase in inositol trisphosphate. Depolarising (25 mM) extrasynaptosomal K+ produced a smaller increase in intrasynaptosomal free [Ca2+] (to around 400 nM) and a proportional increase in inositol bisphosphate radioactivity. Carbachol (1 mM) alone elicited only limited polyphosphoinositide breakdown and inositol mono- and bisphosphate formation, but this was greatly increased in the presence of 25 mM K+. The effect of carbachol in the presence of depolarising K+ was time- and dose-dependent and was antagonised by atropine (10 microM). There was no detectable accumulation of inositol trisphosphate in the presence of carbachol, K+, or carbachol plus K+, even after short (30 s.) incubations. The lack of inositol trisphosphate accumulation does not appear to result from rapid formation of inositol tetrakisphosphate or from enhanced breakdown of the trisphosphate in synaptosomes.  相似文献   
19.
The squid giant axon and extruded axoplasm from the giant axon were used to study the capacity of axoplasm for phospholipid synthesis. Extruded axoplasm, suspended in chemically defined media, catalyzed the synthesis of phospholipids from all of the precursors tested. 32P-Labeled inorganic phosphate and gamma-labeled ATP were actively incorporated into phosphatidylinositol phosphate, while [2-3H]myo-inositol and L-[3H(G)]serine were actively incorporated into phosphatidylinositol and phosphatidylserine, respectively. Though less well utilized. [2-3H]glycerol was incorporated into phosphatidic acid, phosphatidylinositol, and triglyceride, and methyl-3H]choline and [1-3H]ethanolamine were incorporated into phosphatidylcholine and phosphatidylethanolamine, respectively. Isolated squid giant axons were incubated in artificial seawater containing the above precursors. The axoplasm was extruded following the incubations. Although most of the product lipids were recovered in the sheath (composed of cortical axoplasm, axolemma, and surrounding satellite cells), significant amounts (4-20%) were present in the extruded axoplasm. With tritiated choline and myo-inositol, the major labeled phospholipids found in both the extruded axoplasm and the sheath were phosphatidylcholine and phosphatidylinositol, respectively. With both glycerol and phosphate, phosphatidylethanolamine was a major labeled lipid in both axoplasm and sheath. These findings demonstrate that all classes of phospholipids are formed by endogenous synthetic enzymes in axoplasm. In addition, we feel that the different patterns of incorporation by intact axons and extruded axoplasm indicate that surrounding sheath cells contribute lipids to axoplasm. A comprehensive picture of axonal lipid metabolism should include axoplasmic synthesis and glial-axon transfer as pathways complementing the axonal transport of perikaryally formed lipids.  相似文献   
20.
Intracerebral administration of [3H]arachidonic acid ([3H]ArA) into 19-20-day-old rat embryos, resulted in a rapid incorporation of label into brain lipids. One hour after injection, 55.6 +/- 8.2, 18.0 +/- 3.4, and 13.7 +/- 1.3% of the total radioactivity was associated with phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine, respectively. Approximately 10% of radioactivity was found acylated in neutral lipids of which free ArA comprised only 1.5 +/- 0.2% of the total radioactivity. Complete restriction of the maternal-fetal circulation for < or = 40 min did not affect the rate of [3H]ArA incorporation (t1/2 = 2 min) into fetal brain lipids, suggesting an effective acylation mechanism that proceeds irrespective of the impaired blood flow. After a short restriction period (5 min), the radioactivity in diacylglycerol was elevated by 50%. After a longer restriction period (20 min), the radioactivity in the free fatty acid and diacylglycerol fractions increased to values of 130 and 87%, respectively. Polyphosphoinositides prelabeled with either [3H]ArA or 32P were rapidly degraded after 5 min of ischemia. After 20 min, the decrease in phosphatidylinositol-4-phosphate and phosphatidylinositol-4,5-bisphosphate radioactivity was 47 and 70%, respectively. Double labeling of phospholipids with [14C]palmitic acid and [3H]ArA indicated a preferential loss of [3H]ArA within the polyphosphoinositide species after 20 min, but not after 5 min of ischemia. The specific activity of [14C]palmitate remained unchanged. The current data suggest phospholipase C-mediated diacylglycerol formation at the beginning of the insult followed by a phospholipase A2-mediated ArA liberation at a later time, both enzymes presumably acting preferentially on polyphosphoinositide species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号