首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   197篇
  免费   2篇
  国内免费   12篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   4篇
  2017年   4篇
  2016年   2篇
  2015年   4篇
  2014年   5篇
  2013年   20篇
  2012年   2篇
  2011年   10篇
  2010年   9篇
  2009年   15篇
  2008年   20篇
  2007年   13篇
  2006年   12篇
  2005年   10篇
  2004年   10篇
  2003年   12篇
  2002年   12篇
  2001年   5篇
  2000年   3篇
  1999年   6篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   5篇
  1993年   2篇
  1991年   2篇
  1989年   1篇
  1988年   5篇
  1987年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有211条查询结果,搜索用时 31 毫秒
11.
12.
SIRT1 is the closest mammalian homologue of enzymes that extend life in lower organisms. Its role in mammals is incompletely understood, but includes modulation of at least 34 distinct targets through its nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase activity. Recent experiments using small molecule activators and genetically engineered mice have provided new insight into the role of this enzyme in mammalian biology and helped to highlight some of the potentially relevant targets. The most widely employed activator is resveratrol, a small polyphenol that improves insulin sensitivity and vascular function, boosts endurance, inhibits tumor formation, and ameliorates the early mortality associated with obesity in mice. Many of these effects are consistent with modulation of SIRT1 targets, such as PGC1α and NFκB, however, resveratrol can also activate AMPK, inhibit cyclooxygenases, and influence a variety of other enzymes. A novel activator, SRT1720, as well as various methods to manipulate NAD+ metabolism, are emerging as alternative methods to increase SIRT1 activity, and in many cases recapitulate effects of resveratrol. At present, further studies are needed to more directly test the role of SIRT1 in mediating beneficial effects of resveratrol, to evaluate other strategies for SIRT1 activation, and to confirm the specific targets of SIRT1 that are relevant in vivo. These efforts are especially important in light of the fact that SIRT1 activators are entering clinical trials in humans, and “nutraceutical” formulations containing resveratrol are already widely available.  相似文献   
13.
根据鸭梨多酚氧化酶基因序列设计引物,PCR扩增该基因3′端450bp的片段,并将该片段反向插入真核表达载体pB I121的CaMV 35S启动子和NOS终止子之间,首次构建了鸭梨PPO基因的反义表达载体;其后,在农杆菌EHA105的介导下,成功实现了PPO反义基因对鸭梨组培苗的遗传转化。经Northern杂交和酶活检测证实,转基因鸭梨植株体内的多酚氧化酶基因转录和翻译水平均得到明显抑制,从而为耐褐化梨新品种的培育奠定了基础。  相似文献   
14.
Parkinson’s disease is characterized by a progressive and selective loss of dopaminergic neurons in the substantia nigra. Recent investigations have shown that conjugates such as the 5-S-cysteinyl-dopamine, possess strong neurotoxicity and may contribute to the underlying progression of the disease pathology. Although the neuroprotective actions of flavonoids are well reported, that of hydroxycinnamates and other phenolic acids is less established. We show that the hydroxycinnamates caffeic acid and p-coumaric acid, the hydroxyphenethyl alcohol, tyrosol, and a Champagne wine extract rich in these components protect neurons against injury induced by 5-S-cysteinyl-dopamine in vitro. The protection induced by these polyphenols was equal to or greater than that observed for the flavonoids, (+)-catechin, (−)-epicatechin and quercetin. For example, p-coumaric acid evoked significantly more protection at 1 μM (64.0 ± 3.1%) than both (−)-epicatechin (46.0 ± 4.1%, p < 0.05) and (+)-catechin (13.1 ± 3.0%, p < 0.001) at the same concentration. These data indicate that hydroxycinnamates, phenolic acids and phenolic alcohol are also capable of inducing neuroprotective effects to a similar extent to that seen with flavonoids.  相似文献   
15.
Polyphenols are widely distributed in various fruits, vegetables and seasonings. It is well known that they have several physiological effects due to their antioxidative activities. Their activities depend on structural characteristics that favour the formation of their corresponding stable radicals. During the examination at which pH values, the polyphenol radicals are stabilized, we confirmed that polyphenol radicals were stabilized in NaHCO3/Na2CO3 buffer (pH 10) rather than in physiological pH region. Then, we measured electron spin resonance (ESR) spectra at pH 10 to examine the characteristics of free radical species derived from caffeic acid (CA) with an unsaturated side chain, dihydrocaffeic acid (DCA) with a saturated side chain, chlorogenic acid (ChA) and rosmarinic acid (RA). In analyzing the radical structures, ESR simulation, determinations of macroscopic and microscopic acid dissociation constants and molecular orbital (MO) calculation were performed. In CA, the monophenolate forms were assumed to participate in the formation of free radical species, while in DCA, the diphenol form and the monophenolate forms were presumed to contribute to the formation of free radical species. On the basis of the results, we propose the possible structures of the free radical species formed from polyphenols under alkaline conditions.  相似文献   
16.
Polyphenol have been reported to have physiological effects with respect to alleviating diseases such as osteoporosis and osteopetrosis. We recently reported that the olive polyphenol hydroxytyrosol accelerates bone formation both in vivo and in vitro. The present study was designed to evaluate the in vivo and in vitro effects of apigenin (4′,5,7-trihydroxyflavone), one of the major polyphenols in olives and parsley, on bone formation by using cultured osteoblasts and osteoclasts and ovariectomized (OVX) mice, respectively. Apigenin markedly inhibited cell proliferation and indices of osteoblast differentiation, such as collagen production, alkaline phosphatase activity, and calcium deposition in osteoblastic MC3T3-E1 cells at concentrations of 1–10 μM. At 10 μM, apigenin completely inhibited the formation of multinucleated osteoclasts from mouse splenic cells. Moreover, injection of apigenin at 10 mg kg−1 body weight significantly suppressed trabecular bone loss in the femurs of OVX mice. Our findings indicate that apigenin may have critical effects on bone maintenance in vivo.  相似文献   
17.
Ten different strains of marine cyanobacteria were tested for their ability to decolourise and degrade a recalcitrant diazo dye, C.I. Acid Black 1. Of them, Oscillatoria curvicepsBDU92191 was able to grow up to a tested concentration of 500 mG L−1. The organism degraded 84% of the dye at 100 mG L−1 in 8 days in a medium free of combined nitrogen. The dye degrading ability is attributed to the activities of the enzymes: laccase, polyphenol oxidase and azoreductase. The absence of the doublet amine peak in addition to the overall reduction of absorption in the IR spectra confirmed the mineralisation of the tested azo dye. The nitrogen assimilating enzyme studies along with nitrogenase assay strongly suggested the ability of the non-heterocystous, filamentous marine cyanobacterium, O. curvicepsBDU92191 to use C.I. Acid Black 1 as a nitrogen source in an oligotrophic environment.  相似文献   
18.
A Novel STS Marker for Polyphenol Oxidase Activity in Bread Wheat   总被引:19,自引:0,他引:19  
The enzyme activity of polyphenol oxidase (PPO) in grain has been related to undersirable brown discoloration of bread wheat (Triticum aestivum L.) based end-products, particularly for Asian noodles. Breeding wheat cultivars with low PPO activity is the best approach to reduce the undesirable darkening. Molecular markers could greatly improve selection efficiency in breeding programs. Based on the sequences of PPO genes (GenBank Accession Numbers AY596268, AY596269 and AY596270) conditioning PPO activity during kernel development, 28 pairs of primers were designed using the software ‘DNAMAN’. One of the markers from AY596268, designated as PPO18, can amplify a 685-bp and an 876-bp fragment in the cultivars with high and low PPO activity, respectively. The difference of 191-bp size was detected in the intron region of the PPO gene. The STS marker PPO18 was mapped to chromosome 2AL using a DH population derived from a cross Zhongyou 9507× CA9632, a set of nulli-tetrasomic lines and ditelosomic line 2AS of Chinese Spring. QTL analysis indicated that the PPO gene co-segregated with the STS marker PPO18 and is closely linked to Xgwm312 and Xgwm294 on chromosome 2AL, explaining 28–43% of phenotypic variance for PPO activity across three environments. A total of 233 Chinese wheat cultivars and advanced lines were used to validate the correlation between the polymorphic fragments of PPO18 and grain PPO activity. The results showed that PPO18 is a co-dominant, efficient and reliable molecular marker for PPO activity and can be used in wheat breeding programs targeted for noodle quality improvement.  相似文献   
19.
Tannic acid (TA) has well-described antimutagenic and antioxidant activities. The antioxidant activity of TA has been previously attributed to its capacity to form a complex with iron ions, interfering with the Fenton reaction [Biochim. Biophys. Acta 1472, 1999, 142]. In this work, we observed that TA inhibits, in the micromolar range, in vitro Cu(II) plus ascorbate-mediated hydroxyl radical (*OH) formation (determined as 2-deoxyribose degradation) and oxygen uptake, as well as copper-mediated ascorbate oxidation and ascorbate radical formation (quantified in EPR studies). The effect of TA against 2-deoxyribose degradation was three orders of magnitude higher than classic *OH scavengers, but was similar to several other metal chelators. Moreover, the inhibitory effectiveness of TA, by the four techniques used herein, was inversely proportional to the Cu(II) concentration in the media. These results and the observation of copper-induced changes in the UV spectra of TA are indications that the antioxidant activity of TA relates to its copper chelating ability. Thus, copper ions complexed to TA are less capable of inducing ascorbate oxidation, inhibiting the sequence of reactions that lead to 2-deoxyribose degradation. On the other hand, the efficiency of TA against 2-deoxyribose degradation declined considerably with increasing concentrations of the *OH detector molecule, 2-deoxyribose, suggesting that the copper-TA complex also possesses an *OH trapping activity.  相似文献   
20.
Caffeic acid (CA) is one of the most common cinnamic acids ubiquitously present in plants and implicated in a variety of interactions including allelopathy among plants and microbes. This study investigated the possible interference of CA with root growth and the process of rhizogenesis in hypocotyl cuttings of mung bean (Phaseolus aureus=Vigna radiata). Results indicated that CA (0-1000 microM) significantly suppressed root growth of mung bean, and impaired adventitious root formation and root length in the mung bean hypocotyl cuttings. Further investigations into the role of CA in hampering root formation indicated its interference with the biochemical processes involved in rooting process at the three stages - root initiation (third day; RI), root expression (fifth day; RE), and post-expression (seventh day; PE) - of rhizogenesis. CA caused significant changes in the activities of proteases, peroxidases (PODs), and polyphenol oxidases (PPOs) during root development and decreased the content of total endogenous phenolics (TP) in the hypocotyl cuttings. The enhanced activity of PODs and PPOs, though, relates to lignification and/or phenolic metabolism during rhizogenesis; yet their protective role to CA-induced stress, especially during the PE phase, is not ruled out. At 1000 microM CA, where rooting was significantly affected, TP content was very high during the RI phase, thus indicating its non-utilization. The study concludes that CA interferes with the rooting potential of mung bean hypocotyl cuttings by altering the activities of PODs and PPOs and the endogenous TP content that play a key role in rhizogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号