首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   936篇
  免费   33篇
  国内免费   48篇
  1017篇
  2023年   7篇
  2022年   18篇
  2021年   13篇
  2020年   15篇
  2019年   18篇
  2018年   31篇
  2017年   21篇
  2016年   12篇
  2015年   18篇
  2014年   37篇
  2013年   95篇
  2012年   28篇
  2011年   49篇
  2010年   16篇
  2009年   43篇
  2008年   52篇
  2007年   47篇
  2006年   39篇
  2005年   43篇
  2004年   33篇
  2003年   36篇
  2002年   26篇
  2001年   19篇
  2000年   20篇
  1999年   15篇
  1998年   19篇
  1997年   19篇
  1996年   10篇
  1995年   19篇
  1994年   14篇
  1993年   19篇
  1992年   7篇
  1991年   9篇
  1990年   16篇
  1989年   6篇
  1988年   5篇
  1987年   15篇
  1986年   10篇
  1985年   10篇
  1984年   11篇
  1983年   5篇
  1982年   12篇
  1981年   9篇
  1980年   12篇
  1979年   9篇
  1978年   7篇
  1977年   4篇
  1976年   6篇
  1974年   4篇
  1973年   5篇
排序方式: 共有1017条查询结果,搜索用时 15 毫秒
91.
Free radical attack on the sugar-phosphate backbone generates oxidized apurinic/apyrimidinic (AP) residues in DNA. 2'-deoxyribonolactone (dL) is a C1'-oxidized AP site damage generated by UV and gamma-irradiation, and certain anticancer drugs. If not repaired dL produces G-->A transitions in Escherichia coli. In the base excision repair (BER) pathway, AP endonucleases are the major enzymes responsible for 5'-incision of the regular AP site (dR) and dL. DNA glycosylases with associated AP lyase activity can also efficiently cleave regular AP sites. Here, we report that dL is a substrate for AP endonucleases but not for DNA glycosylases/AP lyases. The kinetic parameters of the dL-incision were similar to those of the dR. DNA glycosylases such as E. coli formamidopyrimidine-DNA glycosylase, mismatch-specific uracil-DNA glycosylase, and human alkylpurine-DNA N-glycosylase bind strongly to dL without cleaving it. We show that dL cross-links with the human proteins 8-oxoguanine-DNA (hOGG1) and thymine glycol-DNA glycosylases (hNth1), and dR cross-links with Nth and hNth1. These results suggest that dL and dR induced genotoxicity might be strengthened by BER pathway in vivo.  相似文献   
92.
Arginine residues are generally considered poor candidates for the role of general bases because they are predominantly protonated at physiological pH. Nonetheless, Arg residues have recently emerged as general bases in several enzymes: IMP dehydrogenase, pectate/pectin lyases, fumarate reductase, and l-aspartate oxidase. The experimental evidence suggesting this mechanistic function is reviewed. Although these enzymes have several different folds and distinct evolutionary origins, a common structural motif is found where the critical Arg residue is solvent accessible and adjacent to carboxylate groups. The chemistry of the guanidine group suggests unique strategies to lower the pK(a) of Arg. Lastly, the presumption that general bases must be predominantly deprotonated is revisited.  相似文献   
93.
Pyruvate formate lyase activating enzyme is a member of a novel superfamily of enzymes that utilize S-adenosylmethionine to initiate radical catalysis. This enzyme has been isolated with several different iron-sulfur clusters, but single turnover monitored by EPR has identified the [4Fe-4S](1+) cluster as the catalytically active cluster; this cluster is believed to be oxidized to the [4Fe-4S](2+) state during turnover. The [4Fe-4S] cluster is coordinated by a three-cysteine motif common to the radical/S-adenosylmethionine superfamily, suggesting the presence of a unique iron in the cluster. The unique iron site has been confirmed by Mossbauer and ENDOR spectroscopy experiments, which also provided the first evidence for direct coordination of S-adenosylmethionine to an iron-sulfur cluster, in this case the unique iron of the [4Fe-4S] cluster. Coordination to the unique iron anchors the S-adenosylmethionine in the active site, and allows for a close association between the sulfonium of S-adenosylmethionine and the cluster as observed by ENDOR spectroscopy. The evidence to date leads to a mechanistic proposal involving inner-sphere electron transfer from the cluster to the sulfonium of S-adenosylmethionine, followed by or concomitant with C-S bond homolysis to produce a 5'-deoxyadenosyl radical; this transient radical abstracts a hydrogen atom from G734 to activate pyruvate formate lyase.  相似文献   
94.
Methyl mercaptan is derived from l-methionine by the action of l-methionine-alpha-deamino-gamma-mercaptomethane lyase (METase) and is a major component of oral malodor. This compound is highly toxic and is thought to play an important role in periodontal disease. We found that Treponema denticola, a member of the subgingival biofilm at periodontal disease sites, produced a large amount of methyl mercaptan even at low concentration of l-methionine. METase activity in a cell-free extract from T. denticola was detected by two-dimensional electrophoresis under non-denaturing conditions, and the protein spot that exhibited high METase activity was identified using a matrix-assisted laser desorption/ionization time-of-flight mass spectrometer. The identified gene produced a METase with a K(m) value for l-methionine (0.55mM) that is much lower than those of METases previously identified in the other organisms. This result suggests that T. denticola is an important producer of methyl mercaptan in the subgingival biofilm.  相似文献   
95.
Hyaluronic acid (HA) was treated with hyaluronate lyase (GBS HA lyase, E.C. 4.2.2.1, from Streptococcus agalactiae strain 4755), and the products have been analyzed by capillary electrophoresis (CE-UV and online CE-ESIMS), gel-permeation chromatography (GPC) and viscosimetric measurements. The resulting electropherograms showed that the enzyme produced a mixture of oligosaccharides with a 4,5-unsaturated uronic acid nonreducing terminus. More exhaustive degradation of HA led to increasing amounts of di-, tetra-, hexa-, octa- and decasaccharides. Using CE, linear relationships were found between peak area of the observed oligosaccharides and reaction time. Determination of viscosity at different stages of reaction yielded an initial rapid decrease following Michaelis-Menten theory. A reaction time-dependent change in the elution position of the HA peak due to partial digestion of HA with GBS hyaluronate lyase has been observed by GPC. These results indicated that the HA lyase under investigation is an eliminase that acts in a nonprocessive endolytic manner, as at all stages of digestion a mixture of oligosaccharides of different size were found. For GBS HA lyase from Streptococcus agalactiae strain 3502, previously published findings reported an action pattern that involves an initial random endolytic cleavage followed by rapid exolytic and processive release of unsaturated disaccharides. Our results suggest that differences between the two enzymes from distinct S. agalactiae strains (GBS strains 4755 and 3502) have to be considered.  相似文献   
96.
Chondroitin lyases (EC 4.2.2.4 and EC 4.2.2.5) are glycosaminoglycan-degrading enzymes that act as eliminases. Chondroitin lyase AC from Arthrobacter aurescens (ArthroAC) is known to act on chondroitin 4-sulfate and chondroitin 6-sulfate but not on dermatan sulfate. Like other chondroitin AC lyases, it is capable of cleaving hyaluronan. We have determined the three-dimensional crystal structure of ArthroAC in its native form as well as in complex with its substrates (chondroitin 4-sulfate tetrasaccharide, CS(tetra) and hyaluronan tetrasaccharide) at resolution varying from 1.25 A to 1.9A. The primary sequence of ArthroAC has not been previously determined but it was possible to determine the amino acid sequence of this enzyme from the high-resolution electron density maps and to confirm it by mass spectrometry. The enzyme-substrate complexes were obtained by soaking the substrate into the crystals for varying lengths of time (30 seconds to ten hours) and flash-cooling the crystals. The electron density map for crystals soaked in the substrate for as short as 30 seconds showed the substrate clearly and indicated that the ring of central glucuronic acid assumes a distorted boat conformation. This structure strongly supports the lytic mechanism where Tyr242 acts as a general base that abstracts the proton from the C5 position of glucuronic acid while Asn183 and His233 neutralize the charge on the glucuronate acidic group. Comparison of this structure with that of chondroitinase AC from Flavobacterium heparinum (FlavoAC) provides an explanation for the exolytic and endolytic mode of action of ArthroAC and FlavoAC, respectively.  相似文献   
97.
Sulfur is a functionally important element of living matter. Incorporation into biomolecules occurs by two basic strategies. Sulfide is added to an activated acceptor in the biosynthesis of cysteine, from which methionine, coenzyme A and a number of biologically important thiols can be constructed. By contrast, the biosyntheses of iron sulfur clusters, cofactors such as thiamin, molybdopterin, biotin and lipoic acid, and the thio modification of tRNA require an activated sulfur species termed persulfidic sulfur (R-S-SH) instead of sulfide. Persulfidic sulfur is produced enzymatically with the IscS protein, the SufS protein and rhodanese being the most prominent biocatalysts. This review gives an overview of sulfur incorporation into biomolecules in prokaryotes with a special emphasis on the properties and the enzymatic generation of persulfidic sulfur as well as its use in biosynthetic pathways.  相似文献   
98.
We previously reported the isolation and cDNA cloning of an endolytic alginate lyase, HdAly, from abalone Haliotis discus hannai [Carbohydr. Res.2003, 338, 2841-2852]. Although HdAly preferentially degraded mannuronate-rich substrates, it was incapable of degrading unsaturated oligomannuronates smaller than tetrasaccharide. In the present study, we used conventional chromatographic techniques to isolate a novel unsaturated-trisaccharide-degrading enzyme, named HdAlex, from the digestive fluid of the abalone. The HdAlex showed a molecular weight of 32,000 on SDS-PAGE and could degrade not only unsaturated trisaccharide but also alginate and mannuronate-rich polymers at an optimal pH and temperature of 7.1 and 42 degrees C, respectively. Upon digestion of alginate polymer, HdAlex decreased the viscosity of the alginate at a slower rate than did HdAly, producing only unsaturated disaccharide without any intermediate oligosaccharides. These results indicate that HdAlex degrades the alginate polymer in an exolytic manner. Because HdAlex split saturated trisaccharide producing unsaturated disaccharide, we considered that this enzyme cleaved the alginate at the second glycoside linkage from the reducing terminus. The primary structure of HdAlex was deduced with cDNAs amplified from an abalone hepatopancreas cDNA library by the polymerase chain reaction. The translational region of 822 bp in the total 887-bp sequence of HdAlex cDNA encoded an amino-acid sequence of 273 residues. The N-terminal sequence of 16 residues, excluding the initiation methionine, was regarded as the signal peptide of this enzyme. The amino-acid sequence of the remaining 256 residues shared 62-67% identities with those of the polysaccharide lyase family-14 (PL14) enzymes such as HdAly and turban-shell alginate lyase SP2. To our knowledge, HdAlex is the first exolytic oligoalginate lyase belonging to PL14.  相似文献   
99.
Michaud J  Kohno M  Proia RL  Hla T 《FEBS letters》2006,580(19):4607-4612
Sphingosine-1-phosophate, generated from the phosphorylation of sphingosine by sphingosine kinase enzymes, is suggested to function as an intracellular second messenger for inflammatory mediators, including formyl peptide, C5a, and Fc. More recently, a role for sphingosine kinases during inflammation has also been proposed. Here we show that sphingosine kinase 1 knockout mice exhibit normal inflammatory cell recruitment during thioglycollate-induced peritonitis and that sphingosine kinase 1-null neutrophils respond normally to formyl peptide. In the collagen-induced arthritis model of rheumatoid arthritis, sphingosine kinase 1 knockout mice developed arthritis with normal incidence and severity. Our findings show that sphingosine kinase 1 is dispensable for inflammatory responses and support the need for more extensive studies of sphingosine kinases in inflammation.  相似文献   
100.
We investigate the effects of detergent on the kinetics and oligomeric state of allene oxide synthase (AOS) from Arabidopsis thaliana (CYP74A1). We show that detergent-free CYP74A1 is monomeric and highly water soluble with dual specificity, but has relatively low activity. Detergent micelles promote a 48-fold increase in k(cat)/K(m) (to 5.9 x 10(7)M(-1)s(-1)) with concomitant changes in the spin state equilibrium of the haem-iron due to the binding of a single detergent micelle to the protein monomer, which is atypical of P450 enzymes. This mechanism is shown to be an important determinant of the substrate specificity of CYP74A1. CYP74A1 may be suited for structural resolution of the first plant cytochrome P450 and its 9-AOS activity and behaviour in vitro has implications for its role in planta.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号