首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   936篇
  免费   33篇
  国内免费   48篇
  1017篇
  2023年   7篇
  2022年   18篇
  2021年   13篇
  2020年   15篇
  2019年   18篇
  2018年   31篇
  2017年   21篇
  2016年   12篇
  2015年   18篇
  2014年   37篇
  2013年   95篇
  2012年   28篇
  2011年   49篇
  2010年   16篇
  2009年   43篇
  2008年   52篇
  2007年   47篇
  2006年   39篇
  2005年   43篇
  2004年   33篇
  2003年   36篇
  2002年   26篇
  2001年   19篇
  2000年   20篇
  1999年   15篇
  1998年   19篇
  1997年   19篇
  1996年   10篇
  1995年   19篇
  1994年   14篇
  1993年   19篇
  1992年   7篇
  1991年   9篇
  1990年   16篇
  1989年   6篇
  1988年   5篇
  1987年   15篇
  1986年   10篇
  1985年   10篇
  1984年   11篇
  1983年   5篇
  1982年   12篇
  1981年   9篇
  1980年   12篇
  1979年   9篇
  1978年   7篇
  1977年   4篇
  1976年   6篇
  1974年   4篇
  1973年   5篇
排序方式: 共有1017条查询结果,搜索用时 0 毫秒
101.
102.
Polysaccharide lyases (PLs) are a broad class of microbial enzymes that degrade anionic polysaccharides. Equally broad diversity in their polysaccharide substrates has attracted interest in biotechnological applications such as biomass conversion to value-added chemicals and microbial biofilm removal. Unlike other PLs, Smlt1473 present in the clinically relevant Stenotrophomonas maltophilia strain K279a demonstrates a wide range of pH-dependent substrate specificities toward multiple, diverse polysaccharides: hyaluronic acid (pH 5.0), poly-β-D-glucuronic (celluronic) acid (pH 7.0), poly-β-D-mannuronic acid, and poly-α-L-guluronate (pH 9.0). To decode the pH-driven multiple substrate specificities and selectivity in this single enzyme, we present the X-ray structures of Smlt1473 determined at multiple pH values in apo and mannuronate-bound states as well as the tetra-hyaluronate-docked structure. Our results indicate that structural flexibility in the binding site and N-terminal loop coupled with specific substrate stereochemistry facilitates distinct modes of entry for substrates having diverse charge densities and chemical structures. Our structural analyses of wild-type apo structures solved at different pH values (5.0–9.0) and pH-trapped (5.0 and 7.0) catalytically relevant wild-type mannuronate complexes (1) indicate that pH modulates the catalytic microenvironment for guiding structurally and chemically diverse polysaccharide substrates, (2) further establish that molecular-level fluctuation in the enzyme catalytic tunnel is preconfigured, and (3) suggest that pH modulates fluctuations resulting in optimal substrate binding and cleavage. Furthermore, our results provide key insight into how strategies to reengineer both flexible loop and regions distal to the active site could be developed to target new and diverse substrates in a wide range of applications.  相似文献   
103.
Enzymes with radical-pair intermediates have been considered as a likely target for purported magnetic field effects in humans. The bacterial enzyme ethanolamine ammonia lyase and the human enzyme methylmalonyl-CoA mutase catalyze coenzyme B12-dependent rearrangement reactions. A common step in the mechanism of these two enzymes is postulated to be homolysis of the cobalt-carbon bond of the cofactor to generate a spin-correlated radical pair consisting of the 5′-deoxyadenosyl radical and cob(II)alamin [Ado· Cbl(II)]. Thus, the reactions catalyzed by these enzymes are expected to be sensitive to an applied magnetic field according to the same principles that control radical pair chemical reactions. The magnetic field effect on ethanolamine ammonia lyase reported previously has been corroborated independently in one of the authors' laboratory. However, neither the human nor the bacterial mutase from Propionibacterium shermanii exhibits a magnetic field effect that could be greater than about 15%, considering the error limit imposed by the uncertainty of the coupled assay. Our studies suggest that putative magnetic field effects on physiological processes are not likely to be mediated by methylmalonyl-CoA mutase. Bioelectromagnetics 18:506–513, 1997. © 1997 Wiley-Liss, Inc.  相似文献   
104.
Detrimental effects of hyperaccumulation of the aromatic amino acid phenylalanine (Phe) in animals, known as phenylketonuria, are mitigated by excretion of Phe derivatives; however, how plants endure Phe accumulating conditions in the absence of an excretion system is currently unknown. To achieve Phe hyperaccumulation in a plant system, we simultaneously decreased in petunia flowers expression of all three Phe ammonia lyase (PAL) isoforms that catalyze the non‐oxidative deamination of Phe to trans‐cinnamic acid, the committed step for the major pathway of Phe metabolism. A total decrease in PAL activity by 81–94% led to an 18‐fold expansion of the internal Phe pool. Phe accumulation had multifaceted intercompartmental effects on aromatic amino acid metabolism. It resulted in a decrease in the overall flux through the shikimate pathway, and a redirection of carbon flux toward the shikimate‐derived aromatic amino acids tyrosine and tryptophan. Accumulation of Phe did not lead to an increase in flux toward phenylacetaldehyde, for which Phe is a direct precursor. Metabolic flux analysis revealed this to be due to the presence of a distinct metabolically inactive pool of Phe, likely localized in the vacuole. We have identified a vacuolar cationic amino acid transporter (PhCAT2) that contributes to sequestering excess of Phe in the vacuole. In vitro assays confirmed PhCAT2 can transport Phe, and decreased PhCAT2 expression in PAL‐RNAi transgenic plants resulted in 1.6‐fold increase in phenylacetaldehyde emission. These results demonstrate mechanisms by which plants maintain intercompartmental aromatic amino acid homeostasis, and provide critical insight for future phenylpropanoid metabolic engineering strategies.  相似文献   
105.
The study was performed on apple trees, ‘Golden Delicious' cv., which is a scab-susceptible cultivar. The phenolic content of apple fruit was determined in different parts of the peel. The phenolic compounds were analysed in the scab spot, in the tissue around the spot and in the healthy tissue. We determined the concentration of various phenolic compounds and related enzyme activities. Infection with the Venturia inaequalis fungus enhanced the metabolism of phenolic compounds at the scab spot, around the spot and in healthy peel. Compared with the healthy tissue and the tissue around the spot, the scab spot showed higher enzyme activity for all tested enzymes, except for dihydrochalcone 2′-O-glucosyltransferase, which had lower activity in the scab spot. In comparison to the healthy peel, the scab spot showed up to 3.4 times more hydroxycinnamic acids, up to 1.1 times more dihydrochalcones and up to 1.4 times more flavan-3-ols. In contrast, the healthy peel showed up to 1.6 times more flavonols than the scab spot.  相似文献   
106.
脯氨酸在小麦愈伤组织培养中的作用初探   总被引:4,自引:0,他引:4  
本文初步研究了脯氨酸在小麦愈伤组织培养中的作用。结果初步表明,小麦愈伤组织能主动吸收培养基中的脯氨酸,并在组织内累积、转化;并且,脯氨酸能刺激小麦愈伤组织苯丙氨酸氨解酶活性,促进苯丙烷类代谢,在愈伤组织中形成导管系统,有利于长期继代培养。  相似文献   
107.
CYP19A1, or human aromatase catalyzes the conversion of androgens to estrogens in a three-step reaction through the formation of 19-hydroxy and 19-aldehyde intermediates. While the first two steps of hydroxylation are thought to proceed through a high-valent iron-oxo species, controversy exists surrounding the identity of the reaction intermediate that catalyzes the lyase and aromatization reaction. We investigated the kinetic isotope effect on the steady-state turnover of Nanodisc-incorporated human CYP19A1 to explore the mechanisms of this reaction. Our experiments reveal a significant (∼2.5) kinetic solvent isotope effect for the C10–C19 lyase reaction, similar to that of the first two hydroxylation steps (2.7 and 1.2). These data implicate the involvement of Compound 1 as a reactive intermediate in the final aromatization step of CYP19A1.  相似文献   
108.
In extracts of flax seedlings 4 days after imbibition, isocitrate lyase activity is unstable in comparison to that in extracts from 2.5-day seedlings or to malate syntheses analysed at several stages of development. This instability in extracts of 4-day seedlings is especially pronounced when a large number of seedlings is homogenized per unit volume of Tris-Mg2+-EDTA-dithioerythritol buffer. However, isocitrate lyase can be stabilized when the resultant homogenate is diluted soon after seedling breakage. The pronounced instability in more concentrated extracts is not due to inadequate buffering by the homogenization medium, nor can it be due to polyphenols because added polyvinylpyrrolidone has no effect. Mixing of a heated supernatant from concentrated extract with dilute unheated extract yields the units of stable isocitrate lyase expected in the dilute extract, ruling out stoichiometric inactivation by a heat-stable component. The pronounced instability is attributed to the action of proteinases. A theoretical model assuming a decay process that is first order in isocitrate lyase and first-order in one or more proteinases is in reasonable agreement with the results. Malate synthase and NADP+-isocitrate dehydrogenase are much more stable in concentrated extracts prepared from 4-day flax seedlings. Isocitrate lyase is stable in concentrated extracts of 5-day watermelon seedlings, which is a developmental stage analogous to that for 4-day flax seedlings.  相似文献   
109.
Due to its ability to emit light, the luciferase from Renilla reniformis (RLuc) is widely employed in molecular biology as a reporter gene in cell culture experiments and small animal imaging. To accomplish this bioluminescence, the 37-kDa enzyme catalyzes the degradation of its substrate coelenterazine in the presence of molecular oxygen, resulting in the product coelenteramide, carbon dioxide, and the desired photon of light. We successfully crystallized a stabilized variant of this important protein (RLuc8) and herein present the first structures for any coelenterazine-using luciferase. These structures are based on high-resolution data measured to 1.4 Å and demonstrate a classic α/β-hydrolase fold. We also present data of a coelenteramide-bound luciferase and reason that this structure represents a secondary conformational form following shift of the product out of the primary active site. During the course of this work, the structure of the luciferase's accessory green fluorescent protein (RrGFP) was also determined and shown to be highly similar to that of Aequorea victoria GFP.  相似文献   
110.
从类芽胞杆菌Paenibacillus sp.WZ008的发酵上清液中纯化得到一个高活力碱性果胶裂解酶,经SDS-PAGE电泳估算其亚基相对分子质量为4.5×104。通过对该酶进行酶学性质研究发现:该酶能催化裂解果胶酸、低酯果胶和高酯果胶;酶催化反应最适温度范围为55~60℃,最适pH为9.6,在最适条件下以低酯果胶为底物酶的比酶活达3 021.6 U/mg;Ca2+能增强该酶的活力,而Mn2+,Ba2+和EDTA强烈抑制该酶活力;当没有Ca2+存在时,高度酯化的果胶是该酶的最适底物,在4 mmol/L Ca2+存在时,该酶以果胶酸为底物比酶活最高(25 467 U/mg)。该酶N端序列比对分析发现与类芽胞杆菌Paenibacillus amylolyticus strain 27c64果胶裂解酶高度同源。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号