首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   0篇
  国内免费   2篇
  38篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   6篇
  2008年   2篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2003年   10篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1996年   1篇
  1990年   1篇
排序方式: 共有38条查询结果,搜索用时 0 毫秒
31.
Larval endoparasitoids can avoid the immune response of the host by the function of polydnavirus (PDV) and venom. PDV infects hemocytes and affects the hemocyte function of the host. In this paper, we investigated how PDV and venom affect the hemocyte population of the host. Cotesia kariyai, the larval endoparasitoid, lowers the hemocyte population of the noctuid host larvae soon after parasitization. The reduction in the number of circulating hemocytes is caused by the breakdown of the circulating hemocytes and of the hematopoietic organ which generates the circulating hemocytes. The decrease in the number of hemocytes shortly after parasitization is a response to the venom. However, the decrease in hemocyte population on and after 6 h post-parasitization appears to be caused by the PDV. Apoptosis in circulating hemocytes was observed on and after 6 h post-injection of PDV plus venom. It was revealed through cytometry that mitosis of circulating hemocytes was halted within 24 h after the injection of PDV plus venom. Apoptosis in the hematopoietic organ was induced 12 h after the injection of PDV plus venom. Furthermore, the plasma from the hosts injected with PDV plus venom depressed the number of hemocytes released from the hemotopoiteic organs.  相似文献   
32.
The diamondback moth, Plutella xylostella, parasitized by its endoparasitoid wasp, Cotesia plutellae, undergoes various physiological alterations which include immunosuppression and an extended larval development. Its symbiotic virus, C. plutellae bracovirus (CpBV), is essential for their successful parasitization with more than 136 putative genes encoded in the viral genome. CpBV15β, a CpBV gene, has been known to play significant role in altering host physiological processes including hemocyte-spreading behavior through inhibition of protein synthesis under in vitro conditions. In the current study, we investigated its specific involvement in physiological processes of the host by transient expression and RNA interference techniques. The open reading frame of CpBV15β was cloned into a eukaryotic expression vector and this recombinant CpBV15β was transfected into nonparasitized 3rd instar P. xylostella by microinjection. CpBV15β was expressed as early as 24 h and was consistent up to 72 h. Due to the expression of this gene, plasma protein levels were significantly reduced and the ability of the hemocytes to adhere and spread on extracellular matrix was inhibited, wherein CpBV15β was detectable in the cytoplasm of hemocytes based on an indirect immunofluorescence assay. To confirm the role of CpBV15β, its double stranded RNA could efficiently recover the hemocyte-spreading behavior and synthesis of plasma proteins suppressed by the transient expression of CpBV15β. In addition, the larvae transfected with CpBV15β significantly suffered poor adult development probably due to lack of storage proteins. Thus these results demonstrate the role of CpBV15β in altering the host physiological processes involving cellular immune response and metamorphic development, which are usually induced by wasp parasitization.  相似文献   
33.
34.
35.
A polydnavirus, Cotesia plutellae bracovirus (CpBV), possesses a segmented and dispersed genome that is located on chromosome(s) of its symbiotic endoparasitic wasp, C. plutellae. When the host wasp parasitizes larvae of the diamondback moth, Plutella xylostella, at least 27 viral genome segments are delivered to the parasitized host along with the wasp egg. The parasitized P. xylostella exhibits significant immunosuppression and a prolonged larval development. Parasitized larvae take about 2 days longer than nonparasitized larvae to develop until the wandering stage of the final larval instar, and die after egress of the full grown wasp larvae. Developmental analysis using juvenile hormone and ecdysteroid analogs suggests that altering endocrine signals could induce the retardation of larval developmental rate in P. xylostella. In this study we used a transient expression technique to micro-inject individual CpBV genome segments, and tested their ability to induce delayed larval development of P. xylostella. We demonstrated that a CpBV segment was able to express its own encoded genes when it was injected into nonparasitized larvae, in which the expression patterns of the segment genes were similar to those in the larvae parasitized by C. plutellae. Twenty three CpBV genome segments were individually cloned and injected into the second instar larvae of P. xylostella and their effects assessed by measuring the time taken for host development to the cocooning stage. Three CpBV genome segments markedly interfered with the host larval development. When the putative genes of these segments were analyzed, it was found that they did not share any common genes. Among these segments able to delay host development, segment S27 was predicted to encode seven protein tyrosine phosphatases (CpBV-PTPs), some of which were mutated by insertional inactivation with transposons, while other encoded gene expressions were unaffected. The mutant segments were unable to induce prolonged larval development of P. xylostella. These results suggest that CpBV can induce prolonged larval development of P. xylostella, and that at least some CpBV-PTPs may contribute to the parasitic role probably by altering titers of developmental hormones.  相似文献   
36.
37.
The immunological and developmental effects of bracoviruses (BVs) from three parasitoids in the genus Microplitis (Braconidae: Microgastrinae) were compared in the hosts Pseudoplusia includens and Heliothis virescens (Lepidoptera: Noctuidae). Southern blotting experiments indicated that viral DNAs from Microplitis demolitor bracovirus (MdBV) cross-hybridized with viral DNAs from Microplitis croceipes bracovirus (McBV) and Microplitis mediator bracovirus (MmBV) under conditions of high stringency. Injection of calyx fluid plus venom from each parasitoid species dose-dependently delayed development of P. includens and H. virescens. Each virus also inhibited pupation of P. includens but not H. virescens. In situ hybridization experiments indicated that MdBV and McBV persistently infect hemocytes in both hosts while MmBV persistently infects hemocytes in P. includens but not H. virescens. While MdBV infection induced a loss of adhesion by most plasmatocytes, McBV and MmBV infection induced a loss of adhesion in less than 50% of cells. Cross-protection experiments indicated that calyx fluid plus venom from one species usually protected progeny of another species from encapsulation but did not always promote successful development.  相似文献   
38.
Very few obligatory relationships involve viruses to the remarkable exception of polydnaviruses (PDVs) associated with tens of thousands species of parasitic wasps that develop within the body of lepidopteran larvae. PDV particles, injected along with parasite eggs into the host body, act by manipulating host immune defences, development and physiology, thereby enabling wasp larvae to survive in a potentially harmful environment. Particle production does not occur in infected tissues of parasitized caterpillars, but is restricted to specialized cells of the wasp ovaries. Moreover, the genome enclosed in the particles encodes almost no viral structural protein, but mostly factors used to manipulate the physiology of the parasitized host. We recently unravelled the viral nature of PDVs associated with braconid wasps by characterizing a large set of nudivirus genes residing permanently in the wasp chromosome(s). Many of these genes encode structural components of the bracovirus particles and their expression pattern correlates with particle production. They constitute a viral machinery comprising a large number of core genes shared by nudiviruses and baculoviruses. Thus bracoviruses do not appear to be nudiviruses remnants, but instead complex nudiviral devices carrying DNA for the delivery of virulence genes into lepidopteran hosts. This highlights the fact that viruses should no longer be exclusively considered obligatory parasites, and that in certain cases they are obligatory symbionts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号