首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2502篇
  免费   72篇
  国内免费   118篇
  2024年   2篇
  2023年   15篇
  2022年   19篇
  2021年   25篇
  2020年   24篇
  2019年   23篇
  2018年   27篇
  2017年   23篇
  2016年   33篇
  2015年   31篇
  2014年   43篇
  2013年   69篇
  2012年   39篇
  2011年   51篇
  2010年   41篇
  2009年   107篇
  2008年   118篇
  2007年   117篇
  2006年   133篇
  2005年   85篇
  2004年   92篇
  2003年   59篇
  2002年   65篇
  2001年   65篇
  2000年   114篇
  1999年   77篇
  1998年   111篇
  1997年   94篇
  1996年   120篇
  1995年   109篇
  1994年   83篇
  1993年   81篇
  1992年   72篇
  1991年   73篇
  1990年   72篇
  1989年   69篇
  1988年   57篇
  1987年   40篇
  1986年   34篇
  1985年   56篇
  1984年   29篇
  1983年   7篇
  1982年   17篇
  1981年   12篇
  1980年   22篇
  1979年   14篇
  1978年   6篇
  1977年   10篇
  1976年   6篇
  1975年   1篇
排序方式: 共有2692条查询结果,搜索用时 46 毫秒
61.
The organization of the microtubule (Mt) cytoskeleton during mitosis and cytokinesis of the generative cell (GC) in Ornithogalum virens L. (bicellular pollen type, chromosome number, n = 3) from prophase to telophase/sperm formation was investigated by localization of -tubulin immunofluorescence using a conventional fluorescence microscope and a confocal laser scanning microscope. Chromosomes were visualized with DNA-binding fluorochrome dyes (ethidium bromide and 46-diamino-2-phenyl-indole). The GC of O. virens is characterized by G2/M transition within the pollen grain and not in the pollen tube as occurs in the majority of species with bicellular pollen. It was found that prophase in the GC starts before anthesis and prometaphase takes place after 10 min of pollen germination. The prophase Mts are organized into three prominent bundles, located near the generative nucleus. The number of these Mt bundles is the same as the number of GC chromosomes, a relation which has not previously been considered in other species. The most evident feature in the prophase/ prometaphase transition of O. virens GC is a direct rapid rearrangement of Mt bundles into a network which appears to interact with kinetochores and form a typical prometaphase Mt organization. The metaphase chromosomes are arranged into a conventional equatorial plate, and not in tandem as is thought to be characteristic of GC metaphase. The metaphase spindle consists of kinetochore fibres and a few interzonal fibres which form dispersed poles. Anaphase is characterized by a significant elongation of the mitotic spindle concomitant with the extension of the distance between the opposite poles. At anaphase the diffuse poles converge. Cytokinesis is realized by cell plate formation in the equatorial plane of the GC. The phragmoplast Mts between two future sperm nuclei appear after Mts of the mitotic spindle have disappeared.Abbreviations DAPI 46-diamino-2-phenyl-indole - GC generative cell - GN generative nucleus - Mt microtubule This research was made possible in part due to TEMPUS Programme and Global Network for Cell and Molecular Biology UNESCO grants to Magorzata Bana. The experimental part of the work was done in Siena University. M. Banas is very grateful to Prof. Mauro Cresti and his group for scientific interest, offering the excellent laboratory facilities, and kind reception.  相似文献   
62.
Summary A polyclonal antibody against -1,3-glucan, callose, extracted from the pollen tube wall ofCamellia japonica was raised in mice and, using it as a probe, the localization of callose in the germinated pollen was studied. By confocal laser scanning microscopy, callose was found in the tip region of the pollen tube and the tube wall; the immuno-fluorescence in the tube wall was less toward the base of the tube. In contrast, the tip region did not fluoresce although the whole of the tube wall did strongly with aniline blue, the specific dye for callose. Immuno-electron microscopy showed that callose was also found in Golgi vesicles which concentrated in the tip region of the pollen tube, the inner layer of the tube wall, callose plugs, and Golgi vesicles in the pollen grain. Immuno-gold labeling was often detected on the fibrous structures in Golgi vesicles and callose plugs. Based on these results, the participation of Golgi vesicles in the formation of the tube wall and callose plugs was discussed.Abbreviation TBS Tris-buffered saline - Tris Tris(hydroxy-methyl)-aminomethane - PBS phosphate-buffered saline - BSA bovine serum albumin - ELISA enzyme-linked immunosorbent assay - CLSM confocal laser scanning microscopy - DP degree of polymerization  相似文献   
63.
M. D. Lazzaro 《Protoplasma》1996,194(3-4):186-194
Summary Actin microfilaments form a dense network within pollen tubes of the gymnosperm Norway spruce (Picea abies). Microfilaments emanate from within the pollen grain and form long, branching arrays passing through the aperture and down the length of the pollen tube to the tip. Pollen tubes are densely packed with large amyloplasts, which are surrounded by branching microfilament bundles. The vegetative nucleus is suspended within the elongating pollen tube within a complex array of microfilaments oriented both parallel to and perpendicular with the growing axis. Microfilament bundles branch out along the nuclear surface, and some filaments terminate on or emanate from the surface. Microfilaments in the pollen tube tip form a 6 m thick, dense, uniform layer beneath the plasma membrane. This layer ensheathes an actin depleted core which contains cytoplasm and organelles, including small amyloplasts, and extends back 36 m from the tip. Behind the core region, the distinct actin layer is absent as microfilaments are present throughout the pollen tube. Organelle zonation is not always maintained in these conifer pollen tubes. Large amyloplasts will fill the pollen tube up to the growing tip, while the distinct layer of microfilaments and cytoplasm beneath the plasma membrane is maintained. The distinctive microfilament arrangement in the pollen tube tips of this conifer is similar to that seen in tip growth in fungi, ferns and mosses, but has not been reported previously in seed plants.  相似文献   
64.
鹅掌楸属植物的多糖壁前体和花粉管的生长   总被引:4,自引:1,他引:3  
本文观察描述了中国鹅掌楸(Liriodendronchinense)和北美鹅掌楸(L.tulipifera)花粉在异已柱头萌发和花粉管生长期间多糖壁前体的发生、形态结构和生理功能.1、多糖壁前体在形态上有P-粒子(Polysaccharideparticles),被膜小泡(coatedvesicle)和小泡(vesicle)三种。2、P-粒子于单核花粉期已经发生,至花粉管延伸期为发生高峰。多糖壁前体是在高尔基体,内质网和线粒体的相继、连续作用下,由淀粉质体、蛋白体和脂滴降解形成.3、P-粒子的形态随不同发育时期而变化,早期为成群的电子透明小泡,或为蛋白质束缚的挤压成多面体形,后期为内含颗粒或微纤丝的无被膜粒子或具刺被膜粒子。4、P-粒子移至管端.或融合或单个通过周质内质网(CER),释放内容物参与管端壁的形成,被膜小池和小泡移至花粉管次顶端区向质膜外分泌,参与花粉管壁内层的形成,或移至管端,提供膜片。最后讨论了亲和性与超微结构特征的关系.  相似文献   
65.
南京紫金山现代植被表土孢粉的初步研究   总被引:14,自引:1,他引:13       下载免费PDF全文
 选择南京紫金山现代植被进行植被调查和表土孢粉分析。结合中国东部不同气候带下的几个地点表土孢粉分析,把孢粉百分含量、孢粉组合及孢粉优势种、标志种与植被的各项参数进行对比,找出植被与孢粉之间的关系。为恢复古植被、古生态和古气候提供科学依据。  相似文献   
66.
Summary High-pressure freezing/freeze substitution/TEM was employed to investigate anthers of the monocotyledonous angiospermLedebouria socialis Roth (Hyacinthaceae) during early tetrad stage. The initials of the outer sporopollenous pollen wall stratum (=sexine) and of the homologous tapetal products (=Ubisch bodies) are composed of highly regular subunits: clustered globules with a constant diameter of approximately 28 nm. The clusters develop within diffuse accumulations of electron-dense material. This process, interpreted as sporopollenin polymerization, does not necessarily depend on the presence of membrane-bound enzymes. Immunogold labeling with JIM 5 and JIM 7 antibodies revealed that the primexine as well as the dissolving tapetal cell walls, the sites of sexine and Ubisch body formation, respectively, contain un-esterified and methyl-esterified pectins.Abbreviations E-PTA ethanolic phosphotungstic acid - PA periodic acid - UA/Pb uranyl acetate/lead  相似文献   
67.
In order to assess the efficiency of male gametophytic selection (MGS) for crop improvement, pollen selection for tolerance to herbicide was applied in maize. The experiment was designed to test the parallel reactivity to Alachlor of pollen and plants grown in controlled conditions or in the field, the response to pollen selection in the sporophytic progeny, the response to a second cycle of MGS, and the transmission of the selected trait to the following generations. The results demonstrated that pollen assay can be used to predict Alachlor tolerance under field conditions and to monitor the response to selection. A positive response to selection applied to pollen in the sporophytic progeny was obtained in diverse genetic backgrounds, indicating that the technique can be generally included in standard breeding programs; the analysis of the data produced in a second selection cycle indicated that the selected trait is maintained in the next generation.  相似文献   
68.
69.
The breeding system of the extremely diverse species Persoonia mollis (Proteaceae) was characterized to, firstly, assess its importance as a mechanism promoting diversity and, secondly, to investigate the mode of control over selective fruit abortion. Fruit quantity and quality was assessed following self-and outcross-pollination manipulations. Twenty percent of outcrossed flowers set fruit, compared to only 1% of flowers fertilized with self-pollen. Fruits produced by self-fertilization were 72% of the weight of cross-fertilized fruits. Fruits produced by self-fertilization were significantly fewer in number and lighter than fruits following natural pollination of unmanipulated flowers (17% fruit set), but outcrossed and naturally pollinated fruits were equivalent. Flower to fruit demography suggested that a post-zygotic mechanism may be preferentially selecting the most vigorous zygote genotypes, as ovary abscission occurs mostly between 4 and 30 weeks after pollination, regardless of pollen source. Self-pollen tube growth was found to be inhibited within the styly, while pollen tubes were found in the ovary for 50% of all outcrossed flowers. These data suggest that a pre-zygotic pseudo self-incompatibility mechanism is the cause of low fruit set following self-pollination. The breeding system of P. mollis was found to promote outbreeding, with an emphasis on flexibility and post-zygotic choice following pre-zygotic pseudo self-incompatibility.Publication no. 120 from the Ecology and Genetics Group of the University of Wollongong  相似文献   
70.
Pollen mitosis in the slipper orchid Cypripedium fasciculatum was studied using correlated methods of immunofluorescence and transmission electron microscopy. Unlike the more highly evolved orchids, the cypripedioid orchids shed pollen as monosulcate monads. Prior to pollen mitosis, the microspore nucleus migrates to a proximal position opposite the aperture, as is typical of monocotyledons. There is no distinct generative pole microtubule system (GPMS) like that recently reported in development of pollen polarity in the vandoid moth orchid Phalaenopsis. Instead, microtubules in early prophase are concentrated around the nucleus and extend into the cytoplasm toward the future generative pole. Once the nucleus has migrated to the continuous surface opposite the aperture, microtubules surround the nucleus evenly and show no tendency to be more concentrated in the generative domain. The mitotic spindle, which develops from the perinuclear microtubules, is asymmetrically placed in the microspore and is cone-shaped. The generative pole is broad and closely appressed to the continuous spore surface, while the vegetative pole is pointed and located in the interior of the microspore. As the chromosomes move poleward, microtubules proliferate in the interzone and a phragmoplast develops. The phragmoplast expands in a hemispherical path beyond the interzone following an array of microtubules that radiates from the generative nucleus. Data from this study indicate that evolution of pollen in orchids includes a shift in location of the generative cell from proximal to distal and the evolution of a GPMS, in addition in the well-known trend toward increased pollen aggregation and loss of exine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号