首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   241篇
  免费   6篇
  国内免费   15篇
  2023年   9篇
  2022年   10篇
  2021年   14篇
  2020年   3篇
  2019年   9篇
  2018年   8篇
  2017年   5篇
  2016年   7篇
  2015年   4篇
  2014年   17篇
  2013年   30篇
  2012年   15篇
  2011年   16篇
  2010年   26篇
  2009年   21篇
  2008年   7篇
  2007年   18篇
  2006年   10篇
  2005年   7篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有262条查询结果,搜索用时 93 毫秒
11.
Hainantoxin-Ⅳ (HNTX-Ⅳ)was isolated from the Chinese bird spider Ornithoctorcs hainana and identified as a novel antagonist of tetrodotoxin-sensitive (TTX-S)sodium channels.As revealed by the solution structure of HNTX-Ⅳ solved by two-dimensional nuclear magnetic resonance (2D-NMR),HNTX-Ⅳ adopts an inhibitor cystine knot motif.To check the role of basic residues during HNTX-Ⅳ's interaction with TTX-S sodium channels,R26A and K27A mutants of HNTX-Ⅳ were constructed by solid-phase chemical synthesis.The synthesized peptides were purified and refolded under optimized oxidation conditions.Correct synthesis and folding were confirmed by MALDI-TOF mass spectrometry and NMR spectroscopy,respectively.Using the whole-cell patch-clamp technique,Lys27 but not Arg26 was identified as a key residue for HNTX-Ⅳ's bioactivity against TTX-S sodium channels,because R26A-HNTX-Ⅳ showed slightly reduced activity and K27A-HNTX-Ⅳ showed almost no inhibition.  相似文献   
12.
Kalifa L  Sia EA 《DNA Repair》2007,6(12):1732-1739
Ultraviolet light is a potent DNA damaging agent that induces bulky lesions in DNA which block the replicative polymerases. In order to ensure continued DNA replication and cell viability, specialized translesion polymerases bypass these lesions at the expense of introducing mutations in the nascent DNA strand. A recent study has shown that the N-terminal sequences of the nuclear translesion polymerases Rev1p and Pol zeta can direct GFP to the mitochondrial compartment of Saccharomyces cerevisiae. We have investigated the role of these polymerases in mitochondrial mutagenesis. Our analysis of mitochondrial DNA point mutations, microsatellite instability, and the spectra of mitochondrial mutations indicate that these translesion polymerases function in a less mutagenic pathway in the mitochondrial compartment than they do in the nucleus. Mitochondrial phenotypes resulting from the loss of Rev1p and Pol zeta suggest that although these polymerases are responsible for the majority of mitochondrial frameshift mutations, they do not greatly contribute to mitochondrial DNA point mutations. Analysis of spontaneous mitochondrial DNA point mutations suggests that Pol zeta may play a role in general mitochondrial DNA maintenance. In addition, we observe a 20-fold increase in UV-induced mitochondrial DNA point mutations in rev deficient strains. Our data provides evidence for an alternative damage tolerance pathway that is specific to the mitochondrial compartment.  相似文献   
13.
Fujii S  Fuchs RP 《The EMBO journal》2004,23(21):4342-4352
Cells contain specialized DNA polymerases that are able to copy past lesions with an associated risk of generating mutations, the major cause of cancer. Here, we reconstitute translesion synthesis (TLS) using the replicative (Pol III) and major bypass (Pol V) DNA polymerases from Escherichia coli in the presence of accessory factors. When the replicative polymerase disconnects from the template in the vicinity of a lesion, Pol V binds the blocked replication intermediate and forms a stable complex by means of a dual interaction with the tip of the RecA filament and the beta-clamp, the processivity factor donated by the blocked Pol III holoenzyme. Both interactions are required to confer to Pol V the processivity that will allow it synthesize, in a single binding event, a TLS patch long enough to support further extension by Pol III. In the absence of these accessory factors, the patch synthesized by Pol V is too short, being degraded by the Pol III-associated exonuclease activity that senses the distortion induced by the lesion, thus leading to an aborted bypass process.  相似文献   
14.
Nagasawa H  Little JB 《Mutation research》2002,510(1-2):121-129
Ultraviolet (UV) irradiation produces DNA photoproducts that are blocks to DNA replication by normal replicative polymerases. A specialized, damage-specific, distributive polymerase, Pol H or Pol h, that is the product of the hRad30A gene, is required for replication past these photoproducts. This polymerase is absent from XP variant (XP-V) cells that must employ other mechanisms to negotiate blocks to DNA replication. These mechanisms include the use of alternative polymerases or recombination between sister chromatids. Replication forks arrested by UV damage in virus transformed XP-V cells degrade into DNA double strand breaks that are sites for recombination, but in normal cells arrested forks may be protected from degradation by p53 protein. These breaks are sites for binding a protein complex, hMre11/hRad50/Nbs1, that colocalizes with H2AX and PCNA, and can be visualized as immunofluorescent foci. The protein complexes need phosphorylation to activate their DNA binding capacity. Incubation of UV irradiated XP-V cells with the irreversible kinase inhibitor wortmannin, however, increased the yield of Mre11 focus-positive cells. One interpretation of this observation is that two classes of kinases are involved after UV irradiation. One would be a wortmannin-resistant kinase that phosphorylates the Mre11 complex. The other would be a wortmannin-sensitive kinase that phosphorylates and activates the p53/large T in SV40 transformed XP-V cells. The sensitive class corresponds to the PI3-kinases of ATM, ATR, and DNA-PK, but the resistant class remains to be identified. Alternatively, the elevated yield of Mre11 foci positive cells following wortmannin treatment may reflect an overall perturbation to the signaling cascades regulated by wortmannin-sensitive PI3 related kinases. In this scenario, wortmannin could compromise damage inducible-signaling pathways that maintain the stability of stalled forks, resulting in a further destabilization of stalled forks that then degrade, with the formation of DNA double strand breaks.  相似文献   
15.
目的:探讨黄芪皂苷对H2O2诱导的心肌细胞凋亡的保护作用。方法:以H2O2诱导SD大鼠心肌损伤细胞模型为基础,用黄芪皂苷Ⅳ预处理进行干预。MTT法检测不同时段细胞凋亡情况,Western blot和RT-PCR检测24h时段Cyclin D1蛋白和mRNA表达水平。结果:H2O2对SD大鼠心肌细胞的损伤呈时间依赖性。H2O2可显著诱导SD大鼠心肌细胞凋亡,而这一作用可被黄芪皂苷Ⅳ显著抑制。结论:黄芪皂苷Ⅳ对H2O2诱导的SD大鼠心肌细胞损伤有明显保护作用。  相似文献   
16.
We have characterized the viral RNA conformation in wild-type, protease-inactive (PR-) and SL1-defective (DeltaDIS) human immunodeficiency virus type 1 (HIV-1), as a function of the age of the viruses, from newly released to grown-up (>or=24 h old). We report evidence for packaging HIV-1 genomic RNA (gRNA) in the form of monomers in PR- virions, viral RNA rearrangement (not maturation) within PR- HIV-1, protease-dependent formation of thermolabile dimeric viral RNAs, a new form of immature gRNA dimer at about 5 h post virion release, and slow-acting dimerization signals in SL1-defective viruses. The rates of gRNA dimer formation were >or=3-fold and >or=10-fold slower in DeltaDIS and PR- viruses than in wild-type, respectively. Thus, the DIS, i.e. the palindrome in the apical loop of SL1, is a dimerization initiation signal, but its role can be masked by one or several slow-acting dimerization site(s) when grown-up SL1-inactive virions are investigated. Grown-up PR- virions are not flawless models for immature virions because gRNA dimerization increases with the age of PR- virions, indicating that the PR- mutation does not "freeze" gRNA conformation in a nascent primordial state. Our study is the first on gRNA conformation in newly released mutant or primate retroviruses. It shows for the first time that the packaged retroviral gRNA matures in more than one step, and that formation of immature dimeric viral RNA requires viral protein maturation. The monomeric viral RNAs isolated from budding HIV-1, as modeled by newly released PR- virions, may be seen as dimers that are much more fragile than thermolabile dimers.  相似文献   
17.
18.
19.
In the presence of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) damage, many DNA polymerases exhibit a dual coding potential which facilitates efficient incorporation of matched dCTP or mismatched dATP. This also holds true for the insertion of 8-oxodGTP opposite template bases dC and dA. Employing single-turnover kinetic methods, we examined human DNA polymerase beta and its novel X-family homolog, human DNA polymerase lambda, to determine which nucleotide and template base was preferred when encountering 8-oxodG and 8-oxodGTP, respectively. While DNA polymerase beta preferentially incorporated dCTP over dATP, DNA polymerase lambda did not modulate a preference for either dCTP or dATP when opposite 8-oxodG in single-nucleotide gapped DNA, as incorporation proceeded with essentially equal efficiency and probability. Moreover, DNA polymerase lambda is more efficient than DNA polymerase beta to fill this oxidized single-nucleotide gap. Insertion of 8-oxodGTP by both DNA polymerases lambda and beta occurred predominantly against template dA, thereby reiterating how the asymmetrical design of the polymerase active site differentially accommodated the anti and syn conformations of 8-oxodG and 8-oxodGTP. Although the electronegative oxygen at the C8 position of 8-oxodG may induce DNA structural perturbations, human DNA ligase I was found to effectively ligate the incorporated 8-oxodGMP to a downstream strand, which sealed the nicked DNA. Consequently, the erroneous nucleotide incorporations catalyzed by DNA polymerases lambda and beta as well as the subsequent ligation catalyzed by a DNA ligase during base excision repair are a threat to genomic integrity.  相似文献   
20.
周虎传  杨劲 《生物磁学》2011,(2):365-367
Y家族DNA聚合酶是一种跨损伤复制酶,即能以损伤的DNA为模板进行复制。Y家族DNA聚合酶广泛分布生物界,人类细胞中Y家族DNA聚合酶至少包括Rev1、Polκ、Polι、Polη四种,Polι在以DNA为模板进行复制时错配率很高而不同于其他跨损伤DNA聚合酶,Polι是目前发现的所有DNA聚合酶中保真性最低的DNA聚合酶。很高的错配率导致很高的突变率,最后基因的突变导致癌症的发生,因此Polι在各个国家被广泛的研究,并且对Polι的各个不同的特性进行了研究,取得了一系列成果,现对Polι的研究进展予以综述,并展望了未来的研究趋势。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号