首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2043篇
  免费   22篇
  国内免费   33篇
  2024年   3篇
  2023年   48篇
  2022年   36篇
  2021年   80篇
  2020年   88篇
  2019年   168篇
  2018年   83篇
  2017年   38篇
  2016年   40篇
  2015年   27篇
  2014年   175篇
  2013年   205篇
  2012年   100篇
  2011年   206篇
  2010年   124篇
  2009年   121篇
  2008年   99篇
  2007年   95篇
  2006年   101篇
  2005年   76篇
  2004年   72篇
  2003年   46篇
  2002年   43篇
  2001年   3篇
  1998年   4篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有2098条查询结果,搜索用时 15 毫秒
121.
Understanding how single nucleotide polymorphisms (SNPs) lead to disease at a molecular level provides a starting point for improved therapeutic intervention. SNPs in the innate immune receptor nucleotide oligomerisation domain 2 (NOD2) can cause the inflammatory disorders Blau Syndrome (BS) and early onset sarcoidosis (EOS) through receptor hyperactivation. Here, we show that these polymorphisms cluster into two primary locations: the ATP/Mg2+-binding site and helical domain 1. Polymorphisms in these two locations may consequently dysregulate ATP hydrolysis and NOD2 autoinhibition, respectively. Complementary mutations in NOD1 did not mirror the NOD2 phenotype, which indicates that NOD1 and NOD2 are activated and regulated by distinct methods.  相似文献   
122.
Protein misfolding causes serious biological malfunction, resulting in diseases including Alzheimer’s disease, Parkinson’s disease and cataract. Molecules which inhibit protein misfolding are a promising avenue to explore as therapeutics for the treatment of these diseases. In the present study, thioflavin T fluorescence and transmission electron microscopy experiments demonstrated that hemin prevents amyloid fibril formation of kappa-casein, amyloid beta peptide and α-synuclein by blocking β-sheet structure assembly which is essential in fibril aggregation. Further, inhibition of fibril formation by hemin significantly reduces the cytotoxicity caused by fibrillar amyloid beta peptide in vitro. Interestingly, hemin degrades partially formed amyloid fibrils and prevents further aggregation to mature fibrils. Light scattering assay results revealed that hemin also prevents protein amorphous aggregation of alcohol dehydrogenase, catalase and γs-crystallin. In summary, hemin is a potent agent which generically stabilises proteins against aggregation, and has potential as a key molecule for the development of therapeutics for protein misfolding diseases.  相似文献   
123.

Objective

Foam cell formation in the arterial wall plays a key role in the development of atherosclerosis. Recent studies showed that Urotensin II (U II) is involved in the pathogenesis of atherosclerosis. Here we examined the effects of human U II on ATP-binding cassette transporter A1 (ABCA1) expression and the underlying mechanism in THP-1 macrophages.

Methods and results

Cultured THP-1 macrophages were treated with U II, followed by measuring the intracellular lipid contents, cholesterol efflux and ABCA1 levels. The results showed that U II dramatically decreased ABCA1 levels and impaired cholesterol efflux. However, the effects of U II on ABCA1 protein expression and cellular cholesterol efflux were partially reversed by inhibition of extracellular signal regulated kinase 1/2 (ERK1/2) and nuclear factor kappa B (NF-κB) activity, suggesting the potential roles of ERK1/2 and NF-κB in ABCA1 expression, respectively.

Conclusion

Our current data indicate that U II may have promoting effects on the progression of atherosclerosis, likely through suppressing ABCA1 expression via activation of the ERK/NF-κB pathway and reducing cholesterol efflux to promote macrophage foam cell formation.  相似文献   
124.
Chemokines are important mediators of cell migration, and thymus and activation-regulated chemokine (TARC/CCL17) and macrophage-derived chemokine (MDC/CCL22) are well-known typical inflammatory chemokines involved in atopic dermatitis (AD). (+)-Nootkatone is the major component of Cyperus rotundus. (+)-Nootkatone has antiallergic, anti-inflammatory, and antiplatelet activities. The purpose of this study was to investigate the effect of (+)-nootkatone on tumor necrosis factor α (TNF-α)/interferon γ (IFN-γ)-induced expression of Th2 chemokines in HaCaT cells. We found that (+)-nootkatone inhibited the TNF-α/IFN-γ-induced expression of TARC/CCL17 and MDC/CCL22 mRNA in HaCaT cells. It also significantly inhibited TNF-α/IFN-γ-induced activation of nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase (MAPK), and protein kinase Cζ (PKCζ). Furthermore, we showed that PKCζ and p38 MAPK contributed to the inhibition of TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression by blocking IκBα degradation in HaCaT cells. Taken together, these results suggest that (+)-nootkatone may suppress TNF-α/IFN-γ-induced TARC/CCL17 and MDC/CCL22 expression in HaCaT cells by inhibiting of PKCζ and p38 MAPK signaling pathways that lead to activation of NF-κB. We propose that (+)-nootkatone may be a useful therapeutic candidate for inflammatory skin diseases such as AD.  相似文献   
125.
Glutaminase plays a critical role in the generation of glutamate, a key excitatory neurotransmitter in the CNS. Excess glutamate release from activated macrophages and microglia correlates with upregulated glutaminase suggesting a pathogenic role for glutaminase. Both glutaminase siRNA and small molecule inhibitors have been shown to decrease excess glutamate and provide neuroprotection in multiple models of disease, including HIV-associated dementia (HAD), multiple sclerosis and ischemia. Consequently, inhibition of glutaminase could be of interest for treatment of these diseases. Bis-2-(5-phenylacetimido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and 6-diazo-5-oxo-l-norleucine (DON), two most commonly used glutaminase inhibitors, are either poorly soluble or non-specific. Recently, several new BPTES analogs with improved physicochemical properties were reported. To evaluate these new inhibitors, we established a cell-based microglial activation assay measuring glutamate release. Microglia-mediated glutamate levels were significantly augmented by tumor necrosis factor (TNF)-α, phorbol 12-myristate 13-acetate (PMA) and Toll-like receptor (TLR) ligands coincident with increased glutaminase activity. While several potent glutaminase inhibitors abrogated the increase in glutamate, a structurally related analog devoid of glutaminase activity was unable to block the increase. In the absence of glutamine, glutamate levels were significantly attenuated. These data suggest that the in vitro microglia assay may be a useful tool in developing glutaminase inhibitors of therapeutic interest.  相似文献   
126.
MicroRNAs (miRNAs) are short, non-coding RNAs that regulate the expression of multiple target genes. Dysregulation of miRNAs is common in sepsis. Through microRNA microarray and qRT-PCR we found that the levels of miR-27a, miR-153 and miR-143 are up regulated, while let-7a, miR-218 and miR-129-5p are down regulated in lungs of septic mice. Knocking down of miR-27a down regulates expression levels of TNF-α and IL-6 significantly via reducing the phosphorylation level of NF-κB p65 and inhibiting its DNA binding activity. Furthermore, neutralisation of miR-27a up regulates PPARγ level, down regulates TNF-α expression, relieves pulmonary inflammation and promotes survival of septic mice, which demonstrates that miR-27a plays an important role in regulating inflammatory response in sepsis and provides a potential target for clinical sepsis research and treatment.  相似文献   
127.
Osteogenesis associated with persistent inflammation or infection exists in a broad range of conditions including rheumatoid arthritis and traumatic bone fracture. The poor outcomes of these conditions will benefit from more effective treatments. Here we investigated the molecular mechanisms and tested NEMO-binding domain peptide as a new approach of circumventing TNF-α inhibition of osteoblast differentiation. Our results showed: TNF-α markedly decreased BMP-2-induced alkaline phosphatase activity in the multipotent myoblast C2C12 cells in a dose dependent manner; stepwise experiments demonstrated that BMP-2-induced Smad1 activity was abrogated by addition of exogenous TNF-α or overexpression of NF-κB, and it was significantly elevated by overexpression of IκBα, an inhibitor of NF-κB; Western blotting showed that TNF-α markedly decreased the amount of phospho-Smad1 in BMP-2-activated C2C12 cells, but it did not alter Smad1 mRNA abundance as measured by real-time PCR; addition of a functional cell-permeable NEMO-binding domain (NBD) peptide antagonized NF-κB activity and ameliorated TNF-α inhibition of osteoblast differentiation. Taken together, our study reveals for the first time that NF-κB activation inhibits osteoblast differentiation by attenuating Smad1 activity and application of NBD peptide ameliorates this inhibitory effect. This could lead to new therapeutic drugs that circumvent the inflammatory inhibition of osteogenesis for treatment of traumatic open fractures with infection, rheumatoid arthritis and other bone loss disorders.  相似文献   
128.
Sulfuretin is one of the main flavonoids produced by Rhus verniciflua, which is reported to inhibit the inflammatory response by suppressing the NF-κB pathway. Because NF-κB activation plays a pivotal role in the pathogenesis of allergic airway inflammation, we here examined the effect of sulfuretin on an ovalbumin-induced airway inflammation model in mice. We isolated sulfuretin from R. verniciflua. Sulfuretin was delivered intraperitoneally after the last ovalbumin challenge. Airway hyper-responsiveness, cytokines, mucin, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. A single administration of sulfuretin reduced airway inflammatory cell recruitment and peribronchiolar inflammation and suppressed the production of various cytokines in bronchoalveolar fluid. In addition, sulfuretin suppressed mucin production and prevented the development of airway hyper-responsiveness. The protective effect of sulfuretin was mediated by the inhibition of the NF-κB signaling pathway. Our results suggest that sulfuretin may have therapeutic potential for the treatment of allergic airway inflammation.  相似文献   
129.
130.
Tumor necrosis factor-associated factor 6 (TRAF6) is an essential adaptor protein for IL-1R or TLR-mediated NF-κB signaling pathway activation. In previous work we have found NUMBL interacts with TAB2 and negatively regulates NF-κB signaling pathway. Here, we report that NUMBL directly binds to TRAF6 in vivo and in vitro. NUMBL down-regulates TRAF6 protein level and shortens its half-life. Furthermore, knockdown of NUMBL significantly increases endogenous TRAF6 protein level in the cultured cortical neurons. In vivo ubiquitination assays indicate that NUMBL promotes the assembly of K48-linked polyubiquitination chains on TRAF6, but has no significant effect on its K63-linked polyubiquitination. Our results collectively reveal that NUMBL interacts with TRAF6 and promotes the degradation of TRAF6 in vivo, leading to the inhibition of NF-κB signaling pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号