首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  24篇
  2022年   1篇
  2021年   2篇
  2014年   3篇
  2012年   1篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
排序方式: 共有24条查询结果,搜索用时 15 毫秒
11.
12.
Members of the plexin protein family are known regulators of axon guidance, but recent data indicate that they have broader functions in the regulation of embryonic morphogenesis. Here we provide further evidence of this by showing that PlexinA1 is expressed in Xenopus neural crest cells and is required for their migration. PlexinA1 expression is detected in migrating cranial neural crest cells and knockdown of PlexinA1 expression using Morpholino oligonucleotides inhibits neural crest migration. PlexinA1 likely affects neural crest migration by interaction with PTK7, a regulator of planar cell polarity that is required for neural crest migration. PlexinA1 and PTK7 interact in immunoprecipitation assays and show phenotypic interaction in co-injection experiments. Considering that plexins and PTK7 have been shown to genetically interact in Drosophila axon guidance and chick cardiac morphogenesis, our data suggest that this interaction is evolutionary conserved and may be relevant for a broad range of morphogenetic events including the migration of neural crest cells in Xenopus laevis.  相似文献   
13.
The correct navigation of axons to their targets depends on guidance molecules in the extra‐cellular environment. Differential responsiveness to a particular guidance cue is largely an outcome of disparity in the expression of its receptors on the reacting axons. Here, we show that the differential responsiveness of sympathetic and sensory neurons to the transmembrane Semaphorin Sema6A is mainly determined by its co‐expression in the responding neurons. Both sympathetic and sensory neurons express the Sema6A receptor Plexin‐A4, but only sympathetic neurons respond to it. The expression of Sema6A counteracts this responsiveness and is detected only in sensory neurons. Remarkably, sensory neurons that lack Sema6A gain sensitivity to it in a Plexin‐A4‐dependent manner. Using heterologus systems, we show that the co‐expression of Sema6A and Plexin‐A4 hinders the binding of exogenous ligand, suggesting that a Sema6A–Plexin‐A4 cis interaction serves as an inhibitory mechanism. Finally, we provide evidence for differential modes of interaction in cis versus in trans. Thus, co‐expression of a transmembrane cue together with its receptor can serve as a guidance response modulator.  相似文献   
14.
Semaphorins and their receptors plexins are implicated in various processes in the nervous system, but how B-plexins regulate the growth of dendrites remains poorly characterized. We had previously observed that Plexin-B1 and B3 interact with microtubule end-binding proteins (EBs) that are central adapters at growing microtubule tips, and this interaction is involved in neurite growth. Therefore, we hypothesized that plexins regulate microtubule dynamics and through that also dendritogenesis. The role of all three B-plexins was systematically examined in these processes. B-plexins and their ligand Semaphorin-4D influence the dynamics of microtubule tips both EB-dependently and independendently. EB3 as well as Plexin-B1, B2 and B3 turned out to have a significant role in the development of dendritic arbor of rat hippocampal neurons. Our results clearly indicate that semaphorin-plexin-EB pathway is one molecular mechanism how extracellular guidance cues are translated into intracellular mechanics. Taken together, Semaphorin-4D and B-plexins modulate the dynamic behavior of microtubule tips, and are therefore important in neurite growth.  相似文献   
15.
Class 3 semaphorins were initially described as axonal growth cone guidance molecules that signal through plexin and neuropilin coreceptors and since then have been established to be regulators of vascular development. Semaphorin 3e (Sema3e) has been shown previously to repel endothelial cells and is the only class 3 semaphorin known to be capable of signaling via a plexin receptor without a neuropilin coreceptor. Sema3e signals through plexin D1 (Plxnd1) to regulate vascular patterning by modulating the cytoskeleton and focal adhesion structures. We showed recently that semaphorin 3d (Sema3d) mediates endothelial cell repulsion and pulmonary vein patterning during embryogenesis. Here we show that Sema3d and Sema3e affect human umbilical vein endothelial cells similarly but through distinct molecular signaling pathways. Time-lapse imaging studies show that both Sema3d and Sema3e can inhibit cell motility and migration, and tube formation assays indicate that both can impede tubulogenesis. Endothelial cells incubated with either Sema3d or Sema3e demonstrate a loss of actin stress fibers and focal adhesions. However, the addition of neuropilin 1 (Nrp1)-blocking antibody or siRNA knockdown of Nrp1 inhibits Sema3d-mediated, but not Sema3e-mediated, cytoskeletal reorganization, and siRNA knockdown of Nrp1 abrogates Sema3d-mediated, but not Sema3e-mediated, inhibition of tubulogenesis. On the other hand, endothelial cells deficient in Plxnd1 are resistant to endothelial repulsion mediated by Sema3e but not Sema3d. Unlike Sema3e, Sema3d incubation results in phosphorylation of Akt in human umbilical vein endothelial cells, and inhibition of the PI3K/Akt pathway blocks the endothelial guidance and cytoskeletal reorganization functions of Sema3d but not Sema3e.  相似文献   
16.
PLX-1 is a PlexinA transmembrane protein in Caenorhabditis elegans, and the transmembrane-type semaphorin, SMP-1, is a ligand for PLX-1. The SMP-1/PLX-1 system has been shown to be necessary for proper epidermal morphogenesis in the male tail and seam cells. Here, we show that the SMP-1/PLX-1 system also regulates vulval morphogenesis. In plx-1 and smp-1 mutants, hermaphrodites sometimes exhibit a protruding vulva or multiple vulva-like protrusions. Throughout the vulval development of plx-1 and smp-1 mutants, the arrangement of vulval cells is often disrupted. In the initial step of vulval morphogenesis, vulval precursor cells (VPCs) are generated normally but are subsequently arranged abnormally in mutants. Continuous observation revealed that plx-1 VPC fails to terminate longitudinal extension after making contact with neighbor VPCs. The arrangement defects of VPCs in plx-1 and smp-1 mutants are rescued by expressing the respective cDNA in VPCs. plx-1::egfp and smp-1::egfp transgenes are both expressed in all vulval cells, including VPCs, throughout vulval development. We propose that the SMP-1/PLX-1 system is responsible for a cell contact-mediated stop signal for VPC extension. Analyses using cell fate-specific markers showed that the arrangement defects of VPCs also affect cell fate specification and cell lineages, but in a relatively small fraction of plx-1 mutants.  相似文献   
17.
The semaphorin gene family contains a large number of secreted and transmembrane proteins; some function as repulsive and attractive cues of axon guidance during development. Here, we report cloning and characterization of zebrafish transmembrane semaphorin gene, semaphorin 6D (sema6D). Sema6D is expressed predominantly in the nervous system during embryogenesis, as determined by in situ hybridization. We also found that Sema6D binds Plexin-A1 in vitro, but not other Plexins. It induces the repulsion of dorsal root ganglion axons, but not sympathetic axons. Consequently, Sema6D might use Plexin-A1 as a receptor to repel specific types of axons during development.  相似文献   
18.
The cardiac neural crest, a subpopulation of the neural crest, contributes to the cardiac outflow tract formation during development. However, how it follows the defined long-range migratory pathway remains unclear. We show here that the migrating cardiac neural crest cells (NCCs) express Plexin-A2, Plexin-D1 and Neuropilin. The membrane-bound ligands for Plexin-A2, Semaphorin (Sema)6A and Sema6B, are expressed in the dorsal neural tube and the lateral pharyngeal arch mesenchyme (the NCC “routes”). Sema3C, a ligand for Plexin-D1/neuropilin-1, is expressed in the cardiac outflow tract (the NCC “target”). Sema6A and Sema6B repel neural crest cells, while Sema3C attracts neural crest cells. Sema6A and Sema6B repulsion and Sema3C attraction are diminished either when Plexin-A2 and Neuropilin-1, or when Plexin-D1, respectively, are knocked down in NCCs. When RNAi knockdown diminishes each receptor in NCCs, the NCCs fail to migrate into the cardiac outflow tract in the developing chick embryo. Furthermore, Plexin-A2-deficient mice exhibit defects of cardiac outflow tract formation. We therefore conclude that the coordination of repulsive cues provided by Sema6A/Sema6B through Plexin-A2 paired with the attractive cue by Sema3C through Plexin-D1 is required for the precise navigation of migrating cardiac NCCs.  相似文献   
19.
Neuronal clues to vascular guidance   总被引:3,自引:0,他引:3  
The development of the vertebrate vascular system into a highly ordered and stereotyped network requires precise control over the branching and growth of new vessels. Recent research has highlighted the important role of genetic programs in regulating vascular patterning and in particular has established a crucial role for families of molecules previously described in controlling neuronal guidance. Like neurons, new vessels are guided along the correct path by integrating attractive and repulsive cues from the external environment. This is achieved by specialised endothelial cells at the leading tip of vessel sprouts which express receptor proteins that couple extracellular guidance signals with the cytoskeletal changes necessary to alter cell direction. Here, we review the genetic and in vitro evidence implicating four families of ligand-receptor signalling systems common to both neuronal and vessel guidance: the Ephrins and Eph receptors; Semaphorins, Neuropilins and Plexin receptors; Netrin and Unc5 receptors; and Slits and Robo receptors.  相似文献   
20.
Plexins are a family of single-pass transmembrane proteins that serve as cell surface receptors for Semaphorins during the embryonic development of animals. Semaphorin–Plexin signaling is critical for many cellular aspects of organogenesis, including cell migration, proliferation and survival. Until recently, little was known about the function of PlexinD1, the sole member of the vertebrate-specific PlexinD (PlxnD1) subfamily. Here we review novel findings about PlxnD1's roles in the development of the cardiovascular, nervous and immune systems and salivary gland branching morphogenesis and discuss new insights concerning the molecular mechanisms of PlxnD1 activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号