首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2362篇
  免费   215篇
  国内免费   435篇
  2024年   11篇
  2023年   61篇
  2022年   50篇
  2021年   76篇
  2020年   96篇
  2019年   105篇
  2018年   84篇
  2017年   99篇
  2016年   113篇
  2015年   105篇
  2014年   108篇
  2013年   179篇
  2012年   112篇
  2011年   138篇
  2010年   102篇
  2009年   114篇
  2008年   155篇
  2007年   115篇
  2006年   107篇
  2005年   113篇
  2004年   98篇
  2003年   85篇
  2002年   70篇
  2001年   83篇
  2000年   55篇
  1999年   63篇
  1998年   61篇
  1997年   45篇
  1996年   49篇
  1995年   51篇
  1994年   43篇
  1993年   38篇
  1992年   36篇
  1991年   27篇
  1990年   26篇
  1989年   22篇
  1988年   10篇
  1987年   21篇
  1986年   21篇
  1985年   10篇
  1984年   11篇
  1983年   4篇
  1982年   10篇
  1981年   3篇
  1980年   6篇
  1979年   6篇
  1977年   4篇
  1976年   6篇
  1971年   1篇
  1958年   1篇
排序方式: 共有3012条查询结果,搜索用时 78 毫秒
81.
Breeding is limited by energetic or environmental constraints and long-lived species sometimes skip breeding opportunities. Environmental conditions may vary considerably across the geographic and elevational range of a species and species that can respond through variation in life history strategies are likely to maintain populations at the extremes of their ranges. The decision to skip breeding enables animals to adjust life history to circumstances, and plasticity in behavior allows implementation of adjustments. Elevational patterns suggest that breeding may be limited physiologically at high elevations (e.g., greater probability of skipped breeding; resources and environmental conditions more variable) in contrast to low elevations (probability of skipping breeding lower; resources and environmental conditions more predictable). We estimated the probabilities of survival and skipped breeding in a high-elevation population of common toads and compared estimates to existing data for common toads at low elevations, and to another toad species inhabiting a similar high elevation environment. Female common toads at high elevations tend to have high probabilities of skipping breeding and survival relative to data for common toads at low elevations, and appear to use a similar strategy of skipping breeding in response to similar environmental constraints as other toads at high elevations. We provide evidence of variability in this aspect of life history for common toads. Understanding variation in life history within widely distributed species is critical. Knowing that certain life history strategies are employed on a continuum informs conservation efforts, especially as impacts of climate change are likely to be different depending on elevation.  相似文献   
82.
83.
Specialized microenvironment, or neurogenic niche, in embryonic and postnatal mouse brain plays critical roles during neurogenesis throughout adulthood. The subventricular zone (SVZ) and the dentate gyrus (DG) of hippocampus in the mouse brain are two major neurogenic niches where neurogenesis is directed by numerous regulatory factors. Now, we report Akhirin (AKH), a stem cell maintenance factor in mouse spinal cord, plays a pivotal regulatory role in the SVZ and in the DG. AKH showed specific distribution during development in embryonic and postnatal neurogenic niches. Loss of AKH led to abnormal development of the ventricular zone and the DG along with reduction of cellular proliferation in both regions. In AKH knockout mice (AKH−/−), quiescent neural stem cells (NSCs) increased, while proliferative NSCs or neural progenitor cells decreased at both neurogenic niches. In vitro NSC culture assay showed increased number of neurospheres and reduced neurogenesis in AKH−/−. These results indicate that AKH, at the neurogenic niche, exerts dynamic regulatory role on NSC self-renewal, proliferation and differentiation during SVZ and hippocampal neurogenesis.  相似文献   
84.

Background

Stem cell therapy is a strategy far from being satisfactory and applied in the clinic. Poor survival and differentiation levels of stem cells after transplantation or neural injury have been major problems. Recently, it has been recognized that cell death-relevant proteins, notably those that operate in the core of the executioner apoptosis machinery are functionally involved in differentiation of a wide range of cell types, including neural cells.

Scope of review

This article will review recent studies on the mechanisms underlying the non-apoptotic function of mitochondrial and death receptor signaling pathways during neural differentiation. In addition, we will discuss how these major apoptosis-regulatory pathways control the decision between differentiation, self-renewal and cell death in neural stem cells and how levels of activity are restrained to prevent cell loss as final outcome.

Major conclusions

Emerging evidence suggests that, much like p53, caspases and Bcl-2 family members, the two prime triggers of cell death pathways, death receptors and mitochondria, may influence proliferation and differentiation potential of stem cells, neuronal plasticity, and astrocytic versus neuronal stem cell fate decision.

General significance

A better understanding of the molecular mechanisms underlying key checkpoints responsible for neural differentiation as an alternative to cell death will surely contribute to improve neuro-replacement strategies.  相似文献   
85.
Disrupted-in-schizophrenia 1 (DISC1) is a multifunctional scaffold protein which plays an important role in neurogenesis and neural development in the adult brain, especially in the dentate gyrus (DG) of the hippocampus. Accumulated research has unveiled the role of DISC1 in several aspects of neural development and neurogenesis, such as neuronal maturation, proliferation, migration, positioning, differentiation, dendritic growth, axonal outgrowth, and synaptic plasticity. Studies on the function of this protein have explored multiple facets, including variants and missense mutants in genetics, proteins interactivity and signaling pathways in molecular biology, and pathogenesis and treatment targets of major mental illness, and more. In this review, we present several signaling pathways discussed in recent research, such as the AKT signaling pathway, GABA signaling pathway, GSK3β signaling pathway, Wnt signaling pathway, and NMDA-R signaling pathway. DISC1 interacts, directly or indirectly, with these signaling pathways and they co-regulate the process of adult neurogenesis in the hippocampus.  相似文献   
86.
Cryptic species are rarer than their combined, morphologically recognisable species. Each cryptic species may have its own habitat requirements and distribution, and each should be considered separately in biodiversity conservation. This investigation explores how well the two cryptic species of the wetland moss Hamatocaulis vernicosus (Mitt.) Hedenäs s.l., included in Annex II of the EU Habitat Directive, are safeguarded in existing protected sites in Sweden. Further, the northern distribution limit of the southern of the two cryptic species is explored. The distributions of the two cryptic species and their intraspecific variation are judged by the nuclear ITS1?+?2 and the two chloroplast markers rpl16 and trnL-trnF for a set of 89 specimens. The genetic differences between the two cryptic species are significant, but there are no differences between the protected and non-protected subsets within the respective species. The protected areas therefore represent these two species’ genetic variation well. The populations of both cryptic species appear stable, according to their genetic signals. One of the two cryptic species occurs almost throughout Sweden, whereas the other occurs only to the south of the southern limit of the southern boreal zone, except for two finds slightly further north in climatically mild areas.  相似文献   
87.
88.
The endogenous circadian pacemaker of mammals is synchronized to the environmental day by the ambient cycle of relative light and dark. The present studies assessed the actions of light in a novel circadian entrainment paradigm where activity rhythms are bifurcated following exposure to a 24-h light:dark:light:dark (LDLD) cycle. Bifurcated entrainment under LDLD reflects the temporal dissociation of component oscillators that comprise the circadian system and is facilitated when daily scotophases are dimly lit rather than completely dark. Although bifurcation can be stably maintained in LDLD, it is quickly reversed under constant conditions. Here the authors examine whether dim scotophase illumination acts to maintain bifurcated entrainment under LDLD through potential interactions with the parametric actions of bright light during the two daily photophases. In three experiments, wheel-running rhythms of Syrian hamsters were bifurcated under LDLD with dimly lit scotophases, and after several weeks, dim scotophase illumination was either retained or extinguished. Additionally, “full” and “skeleton” photophases were employed under LDLD cycles with dimly lit or completely dark scotophases to distinguish parametric from nonparametric effects of bright light. Rhythm bifurcation was more stable in full versus skeleton LDLD cycles. Dim light facilitated the maintenance of bifurcated entrainment under full LDLD cycles but did not prevent the loss of rhythm bifurcation in skeleton LDLD cycles. These studies indicate that parametric actions of bright light maintain the bifurcated entrainment state; that dim scotophase illumination increases the stability of the bifurcated state; and that dim light interacts with the parametric effects of bright light to increase the stability of rhythm bifurcation under full LDLD cycles. A further understanding of the novel actions of dim light may lead to new strategies for understanding, preventing, and treating chronobiological disturbances. (Author correspondence: )  相似文献   
89.
Lesions of the basal forebrain deplete the neocortex of cholinergic fibers. Acetylcholine depletion in the somatosensory cortex of rats results in reduced stimulus-evoked activity in response to whisker stimulation. Previous studies demonstrate that embryonic basal forebrain transplants improve functional activity toward normal. It is not clear if the activity increase is due to cholinergic replacement or other factors present in the graft. In this study, we examined the possibility that nerve growth factor (NGF), a neurotrophin known as a survival factor and a specific protectant for cholinergic basal forebrain neurons, can preserve basal forebrain cells after a lesion and restore functional activity in the somatosensory cortex. We report that NGF alone is capable of restoring functional activity in the barrel cortex of animals with basal forebrain lesions, while vehicle injections of saline do not alter activity. Both high (10 mug) and low (5 mug) doses of NGF unilaterally injected into the lateral ventricle improved stimulus-evoked functional activity during bilateral whisker stimulation. The mechanism of NGF action is not clear since the restoration of functional activity in cortex was not accompanied by increased cholinergic activity as detected by acetylcholinesterase fiber staining. NGF may act directly on cortical neurons, although its site of action is not well defined.  相似文献   
90.
Chondroitin sulfate (CS) and the CS-rich extracellular matrix structures called perineuronal nets (PNNs) restrict plasticity and regeneration in the CNS. Plasticity is enhanced by chondroitinase ABC treatment that removes CS from its core protein in the chondroitin sulfate proteoglycans or by preventing the formation of PNNs, suggesting that chondroitin sulfate proteoglycans in the PNNs control plasticity. Recently, we have shown that semaphorin3A (Sema3A), a repulsive axon guidance molecule, localizes to the PNNs and is removed by chondroitinase ABC treatment (Vo, T., Carulli, D., Ehlert, E. M., Kwok, J. C., Dick, G., Mecollari, V., Moloney, E. B., Neufeld, G., de Winter, F., Fawcett, J. W., and Verhaagen, J. (2013) Mol. Cell. Neurosci. 56C, 186–200). Sema3A is therefore a candidate for a PNN effector in controlling plasticity. Here, we characterize the interaction of Sema3A with CS of the PNNs. Recombinant Sema3A interacts with CS type E (CS-E), and this interaction is involved in the binding of Sema3A to rat brain-derived PNN glycosaminoglycans, as demonstrated by the use of CS-E blocking antibody GD3G7. In addition, we investigate the release of endogenous Sema3A from rat brain by biochemical and enzymatic extractions. Our results confirm the interaction of Sema3A with CS-E containing glycosaminoglycans in the dense extracellular matrix of rat brain. We also demonstrate that the combination of Sema3A and PNN GAGs is a potent inhibitor of axon growth, and this inhibition is reduced by the CS-E blocking antibody. In conclusion, Sema3A binding to CS-E in the PNNs may be a mechanism whereby PNNs restrict growth and plasticity and may represent a possible point of intervention to facilitate neuronal plasticity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号