首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1212篇
  免费   43篇
  国内免费   18篇
  2023年   5篇
  2022年   20篇
  2021年   32篇
  2020年   33篇
  2019年   23篇
  2018年   21篇
  2017年   17篇
  2016年   22篇
  2015年   42篇
  2014年   64篇
  2013年   68篇
  2012年   42篇
  2011年   77篇
  2010年   77篇
  2009年   72篇
  2008年   83篇
  2007年   87篇
  2006年   70篇
  2005年   55篇
  2004年   41篇
  2003年   39篇
  2002年   44篇
  2001年   31篇
  2000年   14篇
  1999年   17篇
  1998年   6篇
  1997年   15篇
  1996年   4篇
  1995年   13篇
  1994年   12篇
  1993年   9篇
  1992年   10篇
  1991年   6篇
  1990年   12篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1985年   4篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1979年   9篇
  1978年   6篇
  1977年   3篇
  1976年   7篇
  1975年   5篇
  1974年   7篇
  1973年   11篇
  1972年   9篇
  1971年   2篇
排序方式: 共有1273条查询结果,搜索用时 15 毫秒
141.
The mosquito midgut represents the first barrier encountered by the Plasmodium parasite (Haemosporida: Plasmodiidae) when it is ingested in blood from an infected vertebrate. Previous studies identified the Aedes aegypti (L.) (Diptera: Culicidae) mucin-like (AeIMUC1) and short-chain dehydrogenase/reductase (SDR) genes as midgut-expressed candidate genes influencing susceptibility to infection by Plasmodium gallinaceum (Brumpt). We used RNA inference (RNAi) by double-stranded RNA (dsRNA) injections to examine ookinete survival to the oocyst stage following individual gene knock-downs. Double-stranded RNA gene knock-downs were performed 3 days prior to P. gallinaceum infection and oocyst development was evaluated at 7 days post-infection. Mean numbers of parasites developing to the oocyst stage were significantly reduced by 52.3% in dsAeIMUC1-injected females and by 36.5% in dsSDR-injected females compared with females injected with a dsβ-gal control. The prevalence of infection was significantly reduced in dsAeIMUC1- and dsSDR-injected females compared with females injected with dsβ-gal; these reductions resulted in a two- and three-fold increase in the number of uninfected individuals, respectively. Overall, these results suggest that both AeIMUC1 and SDR play a role in Ae. aegypti vector competence to P. gallinaceum.  相似文献   
142.
Concerns over climate change and its potential impact on infectious disease prevalence have contributed to a resurging interest in malaria in the past. A wealth of historical evidence indicates that malaria, specifically Plasmodium vivax, was endemic in the wetlands of England from the 16th century onwards. While it is thought that malaria was introduced to Britain during the Roman occupation (AD first to fifth centuries), the lack of written mortality records prior to the post-medieval period makes it difficult to evaluate either the presence or impact of the disease. The analysis of human skeletal remains from archaeological contexts is the only potential means of examining P. vivax in the past. Malaria does not result in unequivocal pathological lesions in the human skeleton; however, it results in hemolytic anemia, which can contribute to the skeletal condition cribra orbitalia. Using geographical information systems (GIS), we conducted a spatial analysis of the prevalence of cribra orbitalia from 46 sites (5,802 individuals) in relation to geographical variables, historically recorded distribution patterns of indigenous malaria and the habitat of its mosquito vector Anopheles atroparvus. Overall, those individuals living in low-lying and Fenland regions exhibited higher levels of cribra orbitalia than those in nonmarshy locales. No corresponding relationship existed with enamel hypoplasia. We conclude that P. vivax malaria, in conjunction with other comorbidities, is likely to be responsible for the pattern observed. Studies of climate and infectious disease in the past are important for modeling future health in relation to climate change predictions.  相似文献   
143.
The human malaria parasite Plasmodium vivax is globally widespread, causing high malaria morbidity. As P. vivax is highly endemic to India, and previous reports indicate genetic homogeneity in population samples, we tested the hypothesis of no genetic structuring in Indian P. vivax. Further, based on the reports of increasing incidence of Plasmodium falciparum infection in comparison with P. vivax in recent years in India, it was important to understand whether reduction in population size has resulted in decrease in P. vivax infection rate in India. For this, we utilized recently developed putatively neutral markers from chromosome 13 of P. vivax to score single nucleotide polymorphisms in 126 P. vivax isolates collected from 10 different places in India. The overall results indicated that Indian P. vivax bears high nucleotide diversity within population samples but moderate amount of genetic differentiation between population samples. STRUCTURE analysis grouped 10 population samples into three clusters based on the proportion of the genetic ancestries in each population. However, the pattern of clustering does not correlate with sampling locations in India. Furthermore, analyses of past demographic events indicated reduction in population size in majority of population samples, but when isolates from all the 10 samples were considered as a single population, the data fit to the demographic equilibrium model. All these observations clearly indicate that Indian P. vivax presents complex evolutionary history but possesses several features of being a part of ancestral distribution range of this species.  相似文献   
144.
Maternally transferred immunity can have a fundamental effect on the ability of offspring to deal with infection. However, levels of antibodies in adults can vary both quantitatively and qualitatively between individuals and during the course of infection. How infection dynamics and their modification by drug treatment might affect the protection transferred to offspring remains poorly understood. Using the rodent malaria parasite Plasmodium chabaudi, we demonstrate that curing dams part way through infection prior to pregnancy can alter their immune response, with major consequences for offspring health and survival. In untreated maternal infections, maternally transferred protection suppressed parasitaemia and reduced pup mortality by 75 per cent compared with pups from naïve dams. However, when dams were treated with anti-malarial drugs, pups received fewer maternal antibodies, parasitaemia was only marginally suppressed, and mortality risk was 25 per cent higher than for pups from dams with full infections. We observed the same qualitative patterns across three different host strains and two parasite genotypes. This study reveals the role that within-host infection dynamics play in the fitness consequences of maternally transferred immunity. Furthermore, it highlights a potential trade-off between the health of mothers and offspring suggesting that anti-parasite treatment may significantly affect the outcome of infection in newborns.  相似文献   
145.
146.
147.
The fact that malaria is still an uncontrolled disease is reflected by the genetic organization of the parasite genome. Efforts to curb malaria should begin with proper understanding of the mechanism by which the parasites evade human immune system and evolve resistance to different antimalarial drugs. We have initiated such a study and presented herewith the results from the in silico understanding of a seventh chromosomal region of the malarial parasite Plasmodium falciparum encompassing the antigenic var genes (coding pfemp1) and the drug-resistant gene pfcrt located at a specified region of the chromosome 7. We found 60 genes of various functions and lengths, majority (61.67%) of them were performing known functions. Almost all the genes have orthologs in other four species of Plasmodium, of which P. chabaudi seems to be the closest to P. falciparum. However, only two genes were found to be paralogous. Interestingly, the drug-resistant gene, pfcrt was found to be surrounded by seven genes coding for several CG proteins out of which six were reported to be responsible for providing drug resistance to P. vivax. The intergenic regions, in this specified region were generally large in size, majority (73%) of them were of more than 500 nucleotide bp length. We also designed primers for amplification of 21 noncoding DNA fragments in the whole region for estimating genetic diversity and inferring the evolutionary history of this region of P. falciparum genome.  相似文献   
148.
149.
Evolutionary theory argues that ecological interactions between pathogens within an infection can be a potent source of selection shaping traits such as virulence, drug resistance, and infectiousness. In humans, malaria infections are frequently genetically diverse, with mixed genotype infections the norm. A wide variety of evidence shows that crowding occurs within infections, with the population densities of individual genotypes suppressed by the presence of others. Public health interventions are expected to impact on levels of immunity experienced by pathogens, indirectly by reducing the rate of acquisition of natural immunity by reducing the force of infection, and directly in the case of vaccination programs. Here we ask how enhanced host immunity affects competitive interactions between malaria parasites within hosts and thus the strength of in-host selection on traits such as virulence. We used a model malaria system, Plasmodium chabaudi in laboratory mice, where it has been previously shown that less virulent parasites are competitively suppressed by more virulent strains, generating within-host selection for increased virulence. We found that immunization with either a recombinant antigen or with live parasites suppressed parasite densities, but that there was no evidence that immunization relieved or exacerbated competitive suppression, or affected the relative frequency of clones within infections. There is thus no reason to think that immunization strengthens or alleviates the potentially very potent selection on parasite traits arising from interactions between pathogen genotypes within infections.  相似文献   
150.
Nitric oxide (NO), derived from catalysis of inducible NO synthase (iNOS), limits malaria parasite growth in mammals. Transforming growth factor (TGF)-beta1 suppresses iNOS in cells in vitro as well as in vivo in mice, but paradoxically severe malaria in humans is associated with low levels of TGF-beta1. We hypothesized that this paradox is a universal feature of infection and occurs in the mosquito Anopheles stephensi, an invertebrate host for Plasmodium that also regulates parasite development with inducible NO synthase (AsNOS). We show that exogenous human TGF-beta1 dose-dependently regulates mosquito AsNOS expression and that parasite killing by low dose TGF-beta1 depends on AsNOS catalysis. Furthermore, induction of AsNOS expression by TGF-beta1 is regulated by NO synthesis. These results suggest that TGF-beta1 plays similar roles during parasite infection in mammals and mosquitoes and that this role is linked to the effects of TGF-beta1 on inducible NO synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号