首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1212篇
  免费   43篇
  国内免费   18篇
  2023年   5篇
  2022年   20篇
  2021年   32篇
  2020年   33篇
  2019年   23篇
  2018年   21篇
  2017年   17篇
  2016年   22篇
  2015年   42篇
  2014年   64篇
  2013年   68篇
  2012年   42篇
  2011年   77篇
  2010年   77篇
  2009年   72篇
  2008年   83篇
  2007年   87篇
  2006年   70篇
  2005年   55篇
  2004年   41篇
  2003年   39篇
  2002年   44篇
  2001年   31篇
  2000年   14篇
  1999年   17篇
  1998年   6篇
  1997年   15篇
  1996年   4篇
  1995年   13篇
  1994年   12篇
  1993年   9篇
  1992年   10篇
  1991年   6篇
  1990年   12篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1985年   4篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1979年   9篇
  1978年   6篇
  1977年   3篇
  1976年   7篇
  1975年   5篇
  1974年   7篇
  1973年   11篇
  1972年   9篇
  1971年   2篇
排序方式: 共有1273条查询结果,搜索用时 15 毫秒
131.
In eukaryotes, the formation of protein disulfide bonds among cysteine residues is mediated by protein disulfide isomerases and occurs in the highly oxidised environment of the endoplasmic reticulum. This process is poorly understood in malaria parasites. In this paper, we report the gene isolation, sequence and phylogenetic comparisons, protein structure and thioredoxin-domain analyses of nine protein disulfide isomerases-like molecules from five species of malaria parasites including Plasmodium falciparum and Plasmodium vivax (human), Plasmodium knowlesi (simian) and Plasmodium berghei and Plasmodium yoelii (murine). Four of the studied protein disulfide isomerases belong to P. falciparum malaria and have been named PfPDI-8, PfPDI-9, PfPDI-11 and PfPDI-14, based on their chromosomal location. Among these, PfPDI-8 bears the closest similarity to a prototype PDI molecule with two thioredoxin domains (containing CGHC active sites) and a C-terminal Endoplasmic reticulum retrieval signal, SEEL. PfPDI-8 is expressed during all stages of parasite life cycle and is highly conserved (82-96% identity at amino acid level) in the other four Plasmodium species studied. Detailed biochemical analysis of PfPDI-8 revealed that this molecule is a potent oxido-reductase enzyme that facilitated the disulfide-dependent conformational folding of EBA-175, a leading malaria vaccine candidate. These studies open the avenues to understand the process of protein folding and secretory pathway in malaria parasites that in turn might aid in the production of superior recombinant vaccines and provide novel drug targets.  相似文献   
132.
Discovered in 1902 by Georg Maurer as a peculiar dotted staining pattern observable by light microscopy in the cytoplasm of erythrocytes infected with the human malarial parasite Plasmodium falciparum, the function of Maurer's clefts have remained obscure for more than a century. The growing interest in protein sorting and trafficking processes in malarial parasites has recently aroused the Maurer's clefts from their deep slumber. Mounting evidence suggests that Maurer's clefts are a secretory organelle, which the parasite establishes within its host erythrocyte, but outside its own confines, to route parasite proteins across the host cell cytoplasm to the erythrocyte surface where they play a role in nutrient uptake and immune evasion processes. Moreover, Maurer's clefts seem to play a role in cell signaling, merozoite egress, phospholipid biosynthesis and, possibly, other biochemical pathways. Here, we review our current knowledge of the ultrastructure of Maurer's clefts, their proteinaceous composition and their function in protein trafficking.  相似文献   
133.
Plasmodium falciparum parasites that sequester in the placenta bind to the molecule chondroitin sulfate A (CSA). Women become resistant to malaria during pregnancy as they acquire antibodies that inhibit parasite adhesion to CSA, suggesting that a vaccine against placental malaria is feasible. Hyaluronic acid (HA) and non-immune IgG have also been proposed as receptors for P. falciparum adhesion in the placenta, but evidence for their roles is inconclusive. In this study, CSA, HA, and IgG were simultaneously assessed for their relative contributions to placental adhesion. Placental parasites collected in Tanzania uniformly adhered to the molecule CSA, and soluble CSA completely inhibited adhesion of most samples to placental cryosections. Three of 46 placental parasite samples also adhered to immobilized HA, but HA failed to inhibit adhesion of any placental parasites to placental cryosections. Similarly, non-immune IgG and protein A failed to inhibit adhesion of parasite samples to placental cryosection. P. falciparum adhesion in the placenta appears to be a non-redundant process that requires CSA as a receptor. Vaccines that elicit functional antibodies against CSA-binding parasites may confer resistance to pregnancy malaria.  相似文献   
134.
Chondroitin sulfate A (CSA) present in the placental intervillous blood spaces has been described as the main receptor involved in the massive sequestration of Plasmodium falciparum parasitized erythrocytes to the placenta. Placental parasite isolates are functionally distinct from isolates that sequester in other organs, because they do not cytoadhere to CD36 but instead bind to CSA. To investigate for the parasites molecules associated with the CSA adhesion phenotype, different methodologies have been developed to select for CSA-binding lines in vitro mainly using non-placental sources of CSA that differ in their sulfation pattern. In this study, we show that the human trophoblastic BeWo cell line is a very efficient alternative to select for the CSA-binding phenotype in parasitized erythrocytes.  相似文献   
135.
136.
It has been reported that malaria infection impairs hepatic drug clearance and causes a down-regulation of CYP-mediated monooxygenase activities in rodents and humans. In the present study, we investigated the effects of Plasmodium berghei infection on the activity of liver monooxygenases in female DBA/2 and C57BL/6 mice. In both mouse strains, P. berghei infection decreased activities mediated by CYP1A (EROD: DBA/2 65.3%, C57BL/6 44.7%) and 2B (BROD: DBA/2 64.3%, C57BL/6 49.8%) subfamily isoforms and increased activities mediated by 2A5 (COH: DBA/2 182.4%, C57BL/6 148.5%) and 2E1 (PNPH: DBA/2 177.8%, C57BL/6 128.5%) isoforms as compared to non-infected controls. Since malaria infection also produced an increase in ALT (273.1%) and AST (354.1%) activities in the blood serum, our findings are consistent with the view that CYP2A5 activity is induced by liver injury. An almost generalized depression of CYP-mediated activities has been found with numerous infections and inflammatory stimuli but an induction of CYP2A5 had been previously noted only in some viral hepatitis and trematode (liver fluke) infections.  相似文献   
137.
The Plasmodium falciparum cysteine proteases falcipain-2 and falcipain-3 are hemoglobinases and potential antimalarial drug targets. The falcipain-2' gene was identified recently and is nearly identical in sequence to falcipain-2. The product of this gene has not been studied previously. The mature protease domain of falcipain-2' was expressed in Escherichia coli, purified, and refolded to active enzyme. Functional analysis revealed similar biochemical properties to those of falcipain-2, including pH optima (pH 5.5-7.0), reducing requirements, and substrate preference. Studies with cysteine protease inhibitors showed similar inhibition of falcipain-2 and falcipain-2', although specificities were not identical. Considering activity against the presumed biological substrate, both enzymes readily hydrolyzed hemoglobin. Our results confirm that falcipain-2' is an active hemoglobinase and suggest that falcipain-2 and falcipain-2' play similar roles in erythrocytic parasites but that, for promising cysteine protease inhibitors, it will be important to confirm activity against this additional target.  相似文献   
138.
Humans and animals often become coinfected with pathogen strains that differ in virulence. The ensuing interaction between these strains can, in theory, be a major determinant of the direction of selection on virulence genes in pathogen populations. Many mathematical analyses of this assume that virulent pathogen lineages have a competitive advantage within coinfected hosts and thus predict that pathogens will evolve to become more virulent where genetically diverse infections are common. Although the implications of these studies are relevant to both fundamental biology and medical science, direct empirical tests for relationships between virulence and competitive ability are lacking. Here we use newly developed strain-specific real-time quantitative polymerase chain reaction protocols to determine the pairwise competitiveness of genetically divergent Plasmodium chabaudi clones that represent a wide range of innate virulences in their rodent host. We found that even against their background of widely varying genotypic and antigenic properties, virulent clones had a competitive advantage in the acute phase of mixed infections. The more virulent a clone was relative to its competitor, the less it suffered from competition. This result confirms our earlier work with parasite lines derived from a single clonal lineage by serial passage and supports the virulence-competitive ability assumption of many theoretical models. To the extent that our rodent model captures the essence of the natural history of malaria parasites, public health interventions which reduce the incidence of mixed malaria infections should have beneficial consequences by reducing the selection for high virulence.  相似文献   
139.
We demonstrate, for the first time, a functional polyamine biosynthetic pathway in the malaria parasite Plasmodium falciparum that culminates in the synthesis of spermine. Additionally, we also report putrescine and spermidine salvage in the malaria parasite. Putrescine and spermidine transport in P. falciparum infected red blood cells is a highly specific, carrier mediated and active process, mediated by new transporters that differ from the transporters of uninfected red blood cells in their kinetic parameters, Vmax and km, as well as in their activation energy.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号