首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1212篇
  免费   43篇
  国内免费   18篇
  2023年   5篇
  2022年   20篇
  2021年   32篇
  2020年   33篇
  2019年   23篇
  2018年   21篇
  2017年   17篇
  2016年   22篇
  2015年   42篇
  2014年   64篇
  2013年   68篇
  2012年   42篇
  2011年   77篇
  2010年   77篇
  2009年   72篇
  2008年   83篇
  2007年   87篇
  2006年   70篇
  2005年   55篇
  2004年   41篇
  2003年   39篇
  2002年   44篇
  2001年   31篇
  2000年   14篇
  1999年   17篇
  1998年   6篇
  1997年   15篇
  1996年   4篇
  1995年   13篇
  1994年   12篇
  1993年   9篇
  1992年   10篇
  1991年   6篇
  1990年   12篇
  1989年   5篇
  1988年   7篇
  1987年   3篇
  1985年   4篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1979年   9篇
  1978年   6篇
  1977年   3篇
  1976年   7篇
  1975年   5篇
  1974年   7篇
  1973年   11篇
  1972年   9篇
  1971年   2篇
排序方式: 共有1273条查询结果,搜索用时 15 毫秒
101.
Malaria infections normally consist of more than one clonally replicating lineage. Within-host interactions between sensitive and resistant parasites can have profound effects on the evolution of drug resistance. Here, using the Plasmodium chabaudi mouse malaria model, we ask whether the costs and benefits of resistance are affected by the number of co-infecting strains competing with a resistant clone. We found strong competitive suppression of resistant parasites in untreated infections and marked competitive release following treatment. The magnitude of competitive suppression depended on competitor identity. However, there was no overall effect of the diversity of susceptible parasites on the extent of competitive suppression or release. If these findings generalize, then transmission intensity will impact on resistance evolution because of its effect on the frequency of mixed infections, not because of its effect on the distribution of clones per host. This would greatly simplify the computational problems of adequately capturing within-host ecology in models of drug resistance evolution in malaria.  相似文献   
102.
The β-hydroxyacyl-acyl carrier protein dehydratase of Plasmodium falciparum (PfFabZ) catalyzes the third and important reaction of the fatty acid elongation cycle. The crystal structure of PfFabZ is available in hexameric (active) and dimeric (inactive) forms. However, PfFabZ has not been crystallized with any bound inhibitors until now. We have designed a new condition to crystallize PfFabZ with its inhibitors bound in the active site, and determined the crystal structures of four of these complexes. This is the first report on any FabZ enzyme with active site inhibitors that interact directly with the catalytic residues. Inhibitor binding not only stabilized the substrate binding loop but also revealed that the substrate binding tunnel has an overall shape of “U”. In the crystal structures, residue Phe169 located in the middle of the tunnel was found to be in two different conformations, open and closed. Thus, Phe169, merely by changing its side chain conformation, appears to be controlling the length of the tunnel to make it suitable for accommodating longer substrates. The volume of the substrate binding tunnel is determined by the sequence as well as by the conformation of the substrate binding loop region and varies between organisms for accommodating fatty acids of different chain lengths. This report on the crystal structures of the complexes of PfFabZ provides the structural basis of the inhibitory mechanism of the enzyme that could be used to improve the potency of inhibitors against an important component of fatty acid synthesis common to many infectious organisms.  相似文献   
103.
Nitric oxide (NO) is involved in the clearance of several types of bacteria, viruses and parasites. Although the roles of NO and CD8+ T cells in the immune response to malaria have been extensively studied, their actual contributions during the blood stages of malaria infection remain unclear.In this work, we corroborate that serum NO levels are not associated with the in vivo elimination of the blood stages of Plasmodium chabaudi AS. In addition, we show that CD8+ T cells exhibit increased apoptosis and up regulate the expression of TNF-α mRNA on day 4 post-infection and IFN-γ and IL-10 mRNA on day 11 post-infection. Interestingly, only the levels of IFN-γ and IL-10 expression are affected when iNOS is inhibited with aminoguanidine (AG), suggesting that NO could be involved in the activation of CD8+ T cells during the blood stages of plasmodium infection.  相似文献   
104.
Plasmodium falciparum, the major causative parasite for the disease, has acquired resistance to most of the antimalarial drugs used today, presenting an immediate need for new antimalarial drugs. Here, we report the in vitro and in vivo antimalarial activities of 6-(1,2,6,7-tetraoxaspiro[7.11]nonadec-4-yl)hexan-1-ol (N-251) against P. falciparum and Plasmodium berghei parasites. The N-251 showed high antimalarial potencies both in the in vitro and the in vivo tests (EC50 2.3 × 10−8 M; ED50 15 mg/kg (per oral)). The potencies were similar to that of artemisinin in vitro and greater than artemisinin's activity in vivo (p.o.). In addition, N-251 has little toxicity: a single oral administration at 2000 mg/kg to a rat gave no health problems to it. Administration of N-251 to mice bearing 1% of parasitemia (per oral 68 mg/kg, 3 times a day for 3 consecutive days) resulted in a dramatic decrease in the parasitemia: all the 5 mice given N-251 were cured without any recurrence, with no diarrhea or weight loss occurring in the 60 days of experiment. N-251 deserves more extensive clinical evaluation, desirably including future trials in the human.  相似文献   
105.
The parasite Plasmodium falciparum, responsible for the most deadly form of human malaria, is one of the extremely AT-rich genomes sequenced so far and known to possess many atypical characteristics. Using multivariate statistical approaches, the present study analyzes the amino acid usage pattern in 5038 annotated protein-coding sequences in P. falciparum clone 3D7. The amino acid composition of individual proteins, though dominated by the directional mutational pressure, exhibits wide variation across the proteome. The Asn content, expression level, mean molecular weight, hydropathy, and aromaticity are found to be the major sources of variation in amino acid usage. At all stages of development, frequencies of residues encoded by GC-rich codons such as Gly, Ala, Arg, and Pro increase significantly in the products of the highly expressed genes. Investigation of nucleotide substitution patterns in P. falciparum and other Plasmodium species reveals that the nonsynonymous sites of highly expressed genes are more conserved than those of the lowly expressed ones, though for synonymous sites, the reverse is true. The highly expressed genes are, therefore, expected to be closer to their putative ancestral state in amino acid composition, and a plausible reason for their sequences being GC-rich at nonsynonymous codon positions could be that their ancestral state was less AT-biased. Negative correlation of the expression level of proteins with respective molecular weights supports the notion that P. falciparum, in spite of its intracellular parasitic lifestyle, follows the principle of cost minimization. [Reviewing Editor : Dr. Richard Kliman]  相似文献   
106.
In the absence of suitable rodent animal models for Plasmodium falciparum malaria, the efficacy testing of asexual blood-stage vaccine candidates in Aotus nancymaae represents a tool to select between different formulations before conducting expensive human clinical trials. CpG oligonucleotides (ODN) specifically promote the production of pro-inflammatory and Th1-type cytokines and they enhance the immunogenicity of co-administered antigens. Toll like receptor 9 (TLR-9) binds directly and sequence-specifically to single-stranded un-methylated CpG-DNA mediating the biological effects of CpG ODN. We cloned and functionally characterised the TLR-9 cDNA of A. nancymaae. The cDNA encompassed 3,099 bp predicted to code for 1,032 amino acid residues. Results of homology searches to human TLR-9 suggested that the receptor is 93 and 94% identical at the nucleotide and amino acid sequence levels, respectively. Stimulation of splenocytes of A. nancymaae with CpG ODN resulted in proliferative responses in all animals analysed. FACS analysis of cultures incubated with CpG ODN 2006 indicated that the B cell marker CD20 was up-regulated consistent with B cell activation. The high level of sequence conservation of Aona-TLR-9 reinforces the suitability of A. nancymaae as animal model for malaria subunit vaccine development.The nucleotide sequence has been submitted to the GenBank nucleotide sequence database under the accession number AY788894.  相似文献   
107.
Each diastereomer of 10-thiophenyl- and 10-benzenesulfonyl-dihydroartemisinin was synthesized from artemisinin in three steps, and screened against chloroquine-resistance and chloroquine-sensitive Plasmodium falciparum. Three of the four tested compounds were found to be effective. Especially, 10 beta-benzenesulfonyl-dihydroartemisinin showed stronger antimalarial activity than artemisinin.  相似文献   
108.
Adhesion of mature asexual stage Plasmodium falciparum parasite-infected erythrocytes (iRBC) to the vascular endothelium is a critical event in the pathology of Plasmodium falciparum malaria. It has been suggested that the clag gene family is essential in cytoadherence to endothelial receptors. Primers used in PCR and RT-PCR assays allowed us to determine that the gene encoding CLAG 3 (GenBank accession no. NP_473155) is transcribed in the Plasmodium falciparum FCB2 strain. Western blot showed that antisera produced against polymerized synthetic peptides from this protein recognized a 142-kDa band in P. falciparum schizont lysate. Seventy-one 20-amino-acid-long nonoverlapping peptides, spanning the CLAG 3 (cytoadherence-linked asexual protein on chromosome 3) sequence were tested in C32 cell and erythrocyte binding assays. Twelve CLAG peptides specifically bound to C32 cells (which mainly express CD36) with high affinity, hereafter referred to as high-affinity binding peptides (HABPs). Five of them also bound to erythrocytes. HABP binding to C32 cells and erythrocytes was independent of peptide charge or peptide structure. Affinity constants were between 100 nM and 800 nM. Cross-linking and SDS-PAGE analysis allowed two erythrocyte binding proteins of around 26 kDa and 59 kDa to be identified, while proteins of around 53 kDa were identified as possible receptor sites for C-32 cells. The HABPs' role in Plasmodium falciparum invasion inhibition was determined. Such an approach analyzing various CLAG 3 regions may elucidate their functions and may help in the search for new antigens important for developing antimalarial vaccines.  相似文献   
109.
The mechanism of blood-brain barrier breakdown in the complex pathogenesis of cerebral malaria is not well understood. In this study, primary cultures of porcine brain capillary endothelial cells (PBCEC) were used as in vitro model. Membrane-associated malaria antigens obtained from lysed Plasmodium falciparum schizont-infected erythrocytes stimulated human peripheral blood mononuclear cells (PBMC) to secrete tumor necrosis factor alpha. In co-cultivation with the brain endothelial cell model, the malaria-activated PBMC stimulated the expression of E-selectin and ICAM-1 on the PBCEC. Using electric cell-substrate impedance sensing, we detected a significant decrease of endothelial barrier function within 4h of incubation with the malaria-activated PBMC. Correspondingly, immunocytochemical studies showed the disruption of tight junctional complexes. Combination of biochemical and biophysical techniques provides a promising tool to study changes in the blood-brain barrier function associated with cerebral malaria. Moreover, it is shown that the porcine endothelial model is able to respond to human inflammatory cells.  相似文献   
110.
Plasmodium falciparum lactate dehydrogenase (PfLDH) is essential for ATP generation. Based on structural differences within the active site between P. falciparum and human LDH, we have identified a series of heterocyclic azole-based inhibitors that selectively bind within the PfLDH but not the human LDH (hLDH) active site and showed anti-malarial activity in vitro and in vivo. Here we expand on an azole, OXD1, from this series and found that the anti-P. falciparum activity was retained against a panel of strains independently of their anti-malarial drug sensitivity profile. Trophozoites had relatively higher PfLDH enzyme activity and PfLDH-RNA expression levels than rings and were the most susceptible stages to OXD1 exposure. This is probably linked to their increased energy requirements and consistent with glycolysis being an essential metabolic pathway for parasite survival within the erythrocyte. Further structural elaboration of these azoles could lead to the identification of compounds that target P. falciparum through such a novel mechanism and with more potent anti-malarial activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号