首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1267篇
  免费   17篇
  国内免费   75篇
  2023年   3篇
  2022年   7篇
  2021年   11篇
  2020年   17篇
  2019年   10篇
  2018年   13篇
  2017年   24篇
  2016年   13篇
  2015年   15篇
  2014年   37篇
  2013年   35篇
  2012年   27篇
  2011年   47篇
  2010年   25篇
  2009年   53篇
  2008年   56篇
  2007年   43篇
  2006年   43篇
  2005年   43篇
  2004年   42篇
  2003年   48篇
  2002年   46篇
  2001年   30篇
  2000年   31篇
  1999年   42篇
  1998年   26篇
  1997年   37篇
  1996年   44篇
  1995年   37篇
  1994年   43篇
  1993年   32篇
  1992年   41篇
  1991年   46篇
  1990年   49篇
  1989年   38篇
  1988年   61篇
  1987年   55篇
  1986年   25篇
  1985年   10篇
  1984年   10篇
  1983年   8篇
  1982年   11篇
  1981年   6篇
  1980年   5篇
  1979年   4篇
  1977年   2篇
  1976年   1篇
  1974年   4篇
  1973年   1篇
  1971年   1篇
排序方式: 共有1359条查询结果,搜索用时 15 毫秒
111.
Woo PC  Ma SS  Teng JL  Li MW  Lau SK  Yuen KY 《Biotechnology letters》2007,29(10):1575-1582
Among 21 human strains of Laribacter hongkongensis, small plasmids were observed in four strains, and large ones in six strains. The smallest, 3264-bp plasmid, pHLHK19, has only one ORF that encodes a putative replication initiator protein and a predicted origin of replication (ori) with a DnaA box, three 18-bp direct repeats and five pairs of inverted repeats. An Escherichia coli-L. hongkongensis shuttle vector was constructed by ligating the HindIII-digested pHLHK19, containing the replication initiator protein and ori of pHLHK19, to HindIII-digested pBK-CMV. This shuttle vector can propagate in E. coli and L. hongkongensis with good transformation efficiencies.  相似文献   
112.
Zheng F  Shi XW  Yang GF  Gong LL  Yuan HY  Cui YJ  Wang Y  Du YM  Li Y 《Life sciences》2007,80(4):388-396
This study was designed to investigate the in vitro and in vivo transfection efficiency of chitosan nanoparticles used as vectors for gene therapy. Three types of chitosan nanoparticles [quaternized chitosan -60% trimethylated chitosan oligomer (TMCO-60%), C(43-45 KDa, 87%), and C(230 KDa, 90%)] were used to encapsulate plasmid DNA (pDNA) encoding green fluorescent protein (GFP) using the complex coacervation technique. The morphology, optimal chitosan-pDNA binding ratio and conditions for maximal in vitro transfection were studied. The in vivo transfection was conducted by feeding the chitosan/pDNA nanoparticles to 12 BALB/C-nu/nu nude mice. Both conventional and TMCO-60% could form stable nanoparticles with pDNA. The in vitro study showed the transfection efficiency to be in the following descending order: TMCO-60%>C(43-45 KDa, 87%)>C(230 KDa, 90%). TMCO-60% proved to be the most efficient and the optimal chitosan/pDNA ratio being 3.2:1. In vivo study showed most prominent GPF expression in the gastric and upper intestinal mucosa. GFP expression in the mucosa of the stomach and duodenum, jejunum, ileum, and large intestine were found, respectively, in 100%, 88.9%, 77.8% and 66.7% of the nude mice examined. TMCO-60%/pDNA nanoparticles had better in vitro and in vivo transfection activity than the other two, and with minimal toxicity, which made it a desirable non-viral vector for gene therapy via oral administration.  相似文献   
113.
The cry toxin encoding plasmid pHT73 was transferred from Bacillus thuringiensis subspecies kurstaki KT0 to six B. cereus group strains in three lepidopteran (Spodoptera exigua, Plutella xyllostella and Helicoverpa armigera) larvae by conjugation. The conjugation kinetics of the plasmid was precisely studied during the larval infection using a new protocol. The infections were performed with both vegetative and sporulated strains. However, larval death only occurred when infections were made with spore and toxin preparations. Likewise, spore germinations of both donor and recipient strains were only observed in killed larvae, 44–56 h post-infection. Accordingly, kinetics showed that gene transfer between B. thuringiensis strain KT0 and other B. cereus strains only took place in dead larvae among vegetatively growing bacteria. The conjugational transfer ratios varied among different strain combinations and different larvae. The highest transfer ratio reached 5.83 × 10−6 CFU/donor between the KT0 and the AW05R recipient in Helicoverpa armigera, and all transconjugants gained the ability to produce the insecticidal crystal. These results indicated that horizontal gene transfer among B. cereus group strains might play a key role for the acquisition of extra plasmids and evolution of these strains in toxin susceptible insect larvae.  相似文献   
114.
酸铝胁迫是限制植物正常生长发育的重要非生物胁迫因子,严重制约了我国酸性土壤地区的农业生产水平。植物抵御酸铝胁迫的形式复杂多样,如分泌有机酸、提高根际pH、分泌黏液、细胞壁对Al3+的固定、有机酸对细胞溶质中Al3+的螯合与液泡区隔化等。现有研究多集中于常规生理特征分析,缺乏深入的分子生物学解析。基于此,本文对国内外植物适应酸铝胁迫机理的相关研究进行了归纳和总结,从酸铝胁迫对植物生长与生理代谢的影响、植物适应酸铝胁迫最主要的两种生理机制(Al排除机制、Al耐受机制)以及分子水平上调控相关耐铝基因进行了综述。最后针对现有研究的不足提出了展望,以期为深入揭示植物适应酸铝胁迫的机理以及挖掘适于酸土生长的优质作物资源提供理论依据。  相似文献   
115.
The expression level of geranyl diphosphate synthase (GPPS) was suspected to play a key role for geraniol production in recombinant Escherichia coli harboring an entire mevalonate pathway operon and a geraniol synthesis operon. The expression of GPPS was optimized by using ribosomal binding sites (RBSs) designed to have different translation initiation rates (TIRs). The RBS strength in TIR window of 500 arbitrary unit (au)–1400 au for GPPS appears to be suitable for balancing the geraniol biosynthesis pathway in this study. With the TIR of 500 au, the highest production titer of geraniol was obtained at a level of 1119 mg/L, which represented a 6-fold increase in comparison with the previous titer of 183 mg/L. The TIRs of GPPS locating out of range of the optimal window (500–1400 au) caused significant decreases of cell growth and geraniol production. It was suspected to result from metabolic imbalance and plasmid instability in geraniol production by inappropriate expression level of GPP synthase. Our results collectively indicated GPPS as an important regulation point in balancing a recombinant geraniol synthesis pathway. The GPPS-based regulation approach could be applicable for optimizing microbial production of other monoterpenes.  相似文献   
116.
Methionine sulfoxide reductase A (MsrA), a specific enzyme that converts methionine-S-sulfoxide to methionine, plays an important role in the regulation of protein function and the maintenance of redox homeostasis. In this study, we examined the impact of hepatic MsrA overexpression on lipid metabolism and atherosclerosis in apoE-deficient (apoE−/−) mice. In vitro study showed that in HepG2 cells, lentivirus-mediated human MsrA (hMsrA) overexpression upregulated the expression levels of several key lipoprotein-metabolism-related genes such as liver X receptor α, scavenger receptor class B type I, and ABCA1. ApoE−/− mice were intravenously injected with lentivirus to achieve high-level hMsrA expression predominantly in the liver. We found that hepatic hMsrA expression significantly reduced plasma VLDL/LDL levels, improved plasma superoxide dismutase, and paraoxonase-1 activities, and decreased plasma serum amyloid A level in apoE−/− mice fed a Western diet, by significantly altering the expression of several genes in the liver involving cholesterol selective uptake, conversion and excretion into bile, TG biosynthesis, and inflammation. Moreover, overexpression of hMsrA resulted in reduced hepatic steatosis and aortic atherosclerosis. These results suggest that hepatic MsrA may be an effective therapeutic target for ameliorating dyslipidemia and reducing atherosclerosis-related cardiovascular diseases.  相似文献   
117.
118.
We have previously discovered nicotinic acid derivative 1 as a structurally novel dipeptidyl peptidase IV (DPP-4) inhibitor. In this study, we obtained the X-ray co-crystal structure between nicotinic acid derivative 1 and DPP-4. From these X-ray co-crystallography results, to achieve more potent inhibitory activity, we targeted Arg125 as a potential amino acid residue because it was located near the pyridine core, and some known DPP-4 inhibitors were reported to interact with this residue. We hypothesized that the guanidino group of Arg125 could interact with two hydrogen-bond acceptors in a bidentate manner. Therefore, we designed a series of 3-pyridylacetamide derivatives possessing an additional hydrogen-bond acceptor that could have the desired bidentate interaction with Arg125. We discovered the dihydrochloride of 1-{[5-(aminomethyl)-2-methyl-4-(4-methylphenyl)-6-(2-methylpropyl)pyridin-3-yl]acetyl}-l-prolinamide (13j) to be a potent and selective DPP-4 inhibitor that could interact with the guanidino group of Arg125 in a unique bidentate manner.  相似文献   
119.
Chk2 (checkpoint kinase 2) is a serine/threonine kinase that participates in a series of signaling networks responsible for maintaining genomic integrity and responding to DNA damage. The development of selective Chk2 inhibitors has recently attracted much interest as a means of sensitizing cancer cells to current DNA-damaging agents used in the treatment of cancer. Additionally, selective Chk2 inhibitors may reduce p53-mediated apoptosis in normal tissues, thereby helping to mitigate adverse side effects from chemotherapy and radiation. Thus far, relatively few selective inhibitors of Chk2 have been described and none have yet progressed into clinical trials. Here, we report crystal structures of the catalytic domain of Chk2 in complex with a novel series of potent and selective small molecule inhibitors. These compounds exhibit nanomolar potencies and are selective for Chk2 over Chk1. The structures reported here elucidate the binding modes of these inhibitors to Chk2 and provide information that can be exploited for the structure-assisted design of novel chemotherapeutics.  相似文献   
120.
Aim: To explore whether ultraviolet (UV) light treatment within a closed circulating and filtered water drainage system can kill plant pathogenic species. Methods and Results: Ultraviolet experiments at 254 nm were conducted to determine the inactivation coefficients for seven plant pathogenic species. At 200 mJ cm?2, the individual species log reductions obtained for six Ascomycete fungi and a cereal virus were as follows: Leptosphaeria maculans (9·9‐log), Leptosphaeria biglobosa (7·1‐log), Barley stripe mosaic virus (BSMV) (4·1‐log), Mycosphaerella graminicola (2·9‐log), Fusarium culmorum (1·2‐log), Fusarium graminearum (0·6‐log) and Magnaporthe oryzae (0·3‐log). Dilution experiments showed that BSMV was rendered noninfectious when diluted to >1/512. Follow‐up large‐scale experiments using up to 400 l of microbiologically contaminated waste water revealed that the filtration of drainage water followed by UV treatment could successfully be used to inactivate several plant pathogens. Conclusions: By combining sedimentation, filtration and UV irradiation within a closed system, plant pathogens can be successfully removed from collected drainage water. Significance and Impact of the Study: Ultraviolet irradiation is a relatively low cost, energy efficient and labour nonintensive method to decontaminate water arising from a suite of higher biological containment level laboratories and plant growth rooms where genetically modified and/or quarantine fungal and viral plant pathogenic organisms are being used for research purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号