首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21284篇
  免费   1687篇
  国内免费   3006篇
  25977篇
  2024年   67篇
  2023年   285篇
  2022年   388篇
  2021年   459篇
  2020年   601篇
  2019年   711篇
  2018年   732篇
  2017年   690篇
  2016年   747篇
  2015年   707篇
  2014年   961篇
  2013年   1323篇
  2012年   776篇
  2011年   1038篇
  2010年   802篇
  2009年   1125篇
  2008年   1151篇
  2007年   1196篇
  2006年   1092篇
  2005年   1016篇
  2004年   897篇
  2003年   801篇
  2002年   651篇
  2001年   582篇
  2000年   538篇
  1999年   559篇
  1998年   479篇
  1997年   472篇
  1996年   464篇
  1995年   429篇
  1994年   395篇
  1993年   386篇
  1992年   359篇
  1991年   312篇
  1990年   304篇
  1989年   287篇
  1988年   251篇
  1987年   249篇
  1986年   211篇
  1985年   250篇
  1984年   232篇
  1983年   162篇
  1982年   233篇
  1981年   177篇
  1980年   147篇
  1979年   107篇
  1978年   49篇
  1977年   33篇
  1976年   24篇
  1973年   16篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
61.
Abstract. Seedlings of Pinus radiata D. Don were grown in growth chambers for 22 weeks with two levels of phosphorus, under either well-watered or water-stressed conditions at CO2 concentrations of either 330 or 660mm3 dm?3. Plant growth, water use efficiency and conductance were measured and the relationship between these and needle photosynthetic capacity, water use efficiency and conductance was determined by gas exchange at week 22. Phosphorus deficiency decreased growth and foliar surface area at both CO2concentrations; however, it only reduced the maximum photosynthetic rates of the needles at 660 mm3 CO2 dm?3 (plants grown and measured at the same CO2 concentration). Water stress reduced growth and foliar surface area at both CO2 concentrations. Increases in needle photosynthetic rates appeared to be partly responsible for the increased growth at high CO2 where phosphorus was adequate. This effect was amplified by accompanying increases in needle production. Phosphorus deficiency inhibited these responses because it severely impaired needle photosynthetic function. The relative increase in growth in response to high CO2 was higher in the periodically water-stressed plants. This was not due to the maintenance of cell volume during drought. Plant water use efficiency was increased by CO2 enrichment due to an increase in dry weight rather than a decrease in shoot conductance and, therefore, transpirational water loss. Changes in needle conductance and water use efficiency in response to high CO2 were generally in the same direction as those at the whole plant level. If the atmospheric CO2 level reaches the predicted concentration of 660 mm3 dm?3 by the end of next Century, then the growth of P. radiata will only be increased in areas where phosphorus nutrition is adequate. Growth will be increased in drought-affected regions but total water use is unlikely to be reduced.  相似文献   
62.
Abstract. To study whether an electrical potential difference exists across the nuclear envelope or inner nuclear membrane of plant cells, the authors have used an optical probe of membrane potential, the cationic fluorescent dye, DiOC6(3) (MW = 572.5). This dye was microinjected into the nucleoplasm of isolated Acetabularia nuclei (which are still surrounded by a thin layer of cytoplasm) and its subnuclear localization visualized by fluorescence microscopy. Striking differences, which seemed to be correlated with the developmental stage of the isolated nucleus, were observed. In nuclei isolated from cells at the stage of early cap stage formation, the dye was restricted to the nuclear envelope. In nuclei isolated from cells with intermediate or fully developed caps, there was increased nucleoplasmic staining, and the staining of the envelope was frequently diminished or abolished. In all nuclei, the dye remained within the nucleus after injection. Cytoplasmic staining was only observed when nuclei isolated from cells at the stage of early cap formation were incubated in a hyper- or hypo-tonic medium. Various ionophores, injected before the dye into the nucleoplasm, had no effect on the subsequent nuclear localization of DiOC6(3), although they did rapidly induce nucleolar condensation in nuclei isolated from cells at the stage of early cap formation. The results suggested that the electrical properties of Acetabularia nuclear envelopes or inner nuclear membranes change during cell maturation. Furthermore, the retention of the dye in the nucleoplasm under isotonic conditions indicated that the nuclear pores were not open channels for molecules of this size.  相似文献   
63.
Abstract. Portulacaria afra (L.) Jacq. is a perennial facultative CAM species showing a seasonal shift from C3 to CAM photosynthesis. The shift to CAM during the summer occurs despite continued irrigation of the plants. The authors examined the hypothesis that the seasonal shift to CAM occurred because of low transient water potentials. They measured changes in whole leaf water, osmotic and pressure potentials over the course of the shift. They also studied changes in enzyme activity to ascertain if PEP carboxylase and PEP carboxykinase were induced during the seasonal shift to CAM. Water potentials were high, from -0.1 to -0.5 MPa, predawn and midday, when the C3 pathway of photosynthesis was utilized. Osmotic potentials were constant, from -0.7 to - 0.8 MPa, indicating very little change in turgor. P. afra shifted to CAM indicated by large diurnal acid fluctuations (300 400 meq m−2) despite C3-like predawn water potentials. Midday water potentials usually decreased 0.2-0.7 MPa, while the osmotic potential remained unchanged or decreased slightly. Thus, a midday loss of turgor was associated with the use of the CAM pathway. The results support the hypothesis that the induction of CAM occurred due to low transient water potentials and may be partially mediated through the loss of turgor. The shift to CAM is only a partial induction with PEP carboxykinase showing high activity all year round while PEP carboxylase increases three-to five-fold over C3 levels. Relatively high levels of CAM enzyme activity enables the utilization of the CAM pathway in the winter and spring in response to high daytime temperatures and increased evaporative demand. These results would lead to an increase in water use efficiency during such periods when compared to other inducible CAM species.  相似文献   
64.
Summary Although spinose teeth of holly leaves have been widely cited as an example of a physical defense against herbivores, this assumption is based largely on circumstantial evidence and on general misinterpretation of a single, earlier experiment. We studied the response of third and fifth instar larvae of the fall webworm, Hyphantria cunea Drury, a generalist, edge-feeding caterpillar, to intact American holly leaves and to leaves that had been modified by blunting the spines, by removing sections of leaf margin between the spines, or by removing the entire leaf margin. The results suggest that the thick glabrous cuticle and tough leaf margin of Ilex opaca are more important than the spinose teeth in deterring edge-feeding caterpillars. Microscopic examination of mature leaves revealed that the epidermis is thickened at the leaf margin, and that the leaf is cirucumscribed by a pair of fibrous veins. In simple choice tests neither domesticated rabbits nor captive whitetailed deer discriminated between spinescent holly foliage and foliage from which spines were removed. Nevertheless, we found little evidence of herbivory by mammals in the field, either on small experimental trees or in the forest understory. While it is possible that spinose teeth contribute to defense by reducing acceptibility of holly relative to other palatable plant species, we suggest that the high concentrations of saponins and poor nutritional quality of holly foliage may be more important than spines in deterring vertebrate herbivores. The degree of leaf spinescence and herbivory was compared at different heights with the tree canopy to test the prediction that lower leaves should be more spinescent as a deterrent to browsers. Leaves on lower branches of mature forest trees were slightly more spinescent than were upper leaves, and juvenile trees were slightly more spinescent than were mature trees. However, there was no relationship between degree of spinescence and feeding damage. The greater spinescence of holly leaves low in the canopy is probably an ontogenetic phenomenon rather than a facultative defense against browsers.The investigation reported in this paper (No. 87-7-8-77) is in connection with a project of the Kentucky Agricultural Experiment Station and is published with the approval of the Dirctor  相似文献   
65.
Bethlenfalvay, G. J., Brown, M. S., Ames, R. N. and Thomas, R. S. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. - Physiol. Plant. 72: 565–571.
Soybean [ Glycine max (L.) Merr.] plants were grown in pot cultures and inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus mosseae (Nicol. & Gerd.) Gerd. and Trappe or provided with P fertilizer (non-VAM plants). After an initial growth period (21 days), plants were exposed to cycles of severe, moderate or no drought stress over a subsequent 28-day period by rewatering at soil water potentials of -1.0, -0.3 or -0.05 MPa. Dry weights of VAM plants were greater at severe stress and smaller at no stress than those of non-VAM plants. Phosphorus fertilization was applied to produce VAM and non-VAM plants of the same size at moderate stress. Root and leaf P concentrations were higher in non-VAM plants at all stress levels. All plants were stressed to permanent wilting prior to harvest. VAM plants had lower soil moisture content at harvest than non-VAM plants. Colonization of roots by G. mosseae did not vary with stress, but the biomass and length of the extraradical mycelium was greater in severely stressed than in non-stressed plants. Growth enhancement of VAM plants relative to P-fertilized non-VAM plants under severe stress was attributed to increased uptake of water as well as to more efficient P uptake. The ability of VAM plants to deplete soil water to a greater extent than non-VAM plants suggests lower permanent wilting potentials for the former.  相似文献   
66.
Summary The forest annual, Amphicarpaea bracteata L. can reproduce via aerial chasmogamous, aerial cleistogamous, and subterranean cleistogamous flowers. Both plant size and light intensity influenced the utilization of the three modes of reproduction. chasmogamous and aerial cleistogamous flower number and the ratio of chasmogamous flowers to the total number of aerial flowers increased with plant size. The latter demonstrated a shift to xenogamy and outbreeding in larger plants. Light intensity indirectly influenced reproductive modes through its infuence on plant size. Seed set by both types of aerial flowers was low and unrelated to plant size. Subterranean seed number and the total dry weight of subterranean seeds per plant increased with size. The subterranean seeds of Amphicarpaea bracteata are thirty-four times larger than the aerial seeds (fresh weight). Under field conditions, subterranean seeds had greater germination after one year than acrial seeds. The plants arising from subterranean seeds were significantly larger and more fecund than those from aerial seeds. Seeds produced by aerial cleistogamous, hand selfpollinated chasmogamous, and naturally pollinated chasmogamous flowers had equivalent germination rates and produced plants of equal size and fecundity. This suggests that the outbred progeny from chasmogamous flowers have no advantage over the inbred progeny from aerial cleistogamous flowers.  相似文献   
67.
Almond plants (Amygdalus communis L. cv. Garrigues) were grown in the field under drip irrigated and non irrigated conditions. Leaf water potential () and leaf conductance (g1) were determined at three different times of the growing season (spring, summer and autumn). The relationships between and g1 in both treatments showed a continuous decrease of g1 as decreased in spring and summer. Data from the autumn presented a threshold value of (approx. –2.7 MPa in dry treatment, and approx. –1.4 MPa in wet treatment) below which leaf conductance remained constant.  相似文献   
68.
Summary The water relations parameters and the osmoregulatory response ofEremosphaera viridis were investigated both by using the pressure probe technique and by analyzing the intracellular pool of osmotically active agents. In the presence of various concentrations of different salts a biphasic osmoregulatory response was recorded, consisting of a rapid decrease in turgor pressure due to water loss followed by an increase in turgor pressure to the original turgor pressure value (depending on the salt). The values of turgor pressure, volumetric elastic modulus and hydraulic conductivity depended on the composition of the media. Nonelectrolytes did not cause a turgor recovery after the initial water efflux. The second phase of turgor regulation in the presence of salts was characterised by the intracellular accumulation of ions and sugars and required at least 24 hr. Analysis of the cell sap showed that the increase in the internal osmotic pressure was mainly achieved by accumulation of sucrose. Additionally, accumulation of glucose was observed in illuminated cells in the presence of Rb and K. Electron micrographs suggested that the sucrose was produced by degradation of starch granules. Turgor pressure recovery after salt stress seemed to be dependent on temperature and is well correlated with the according photosynthetic activity. The data suggest that a temperature-dependent enzyme which is activated by potassium or rubidium is involved in the regulatory response.  相似文献   
69.
Stomatal sensing of the environment   总被引:1,自引:0,他引:1  
The effects of environmental factors on stomatal behaviour are reviewed and the questions of whether photosynthesis and transpiration eontrol stomata or whether stomata themselves control the rates of these processes is addressed. Light affects stomata directly and indirectly. Light can act directly as an energy source resulting in ATP formation within guard cells via photophosphorylation, or as a stimulus as in the case of the blue light effects which cause guard cell H+ extrusion. Light also acts indirectly on stomata by affecting photosynthesis which influences the intercellular leaf CO2 concentration ( C i). Carbon dioxide concentrations in contact with the plasma membrane of the guard cell or within the guard cell acts directly on cell processes responsible for stomatal movements. The mechanism by which CO2 exerts its effect is not fully understood but, at least in part, it is concerned with changing the properties of guard cell plasma membranes which influence ion transport processes. The C i may remain fairly constant for much of the day for many species which is the result of parallel responses of stomata and photosynthesis to light. Leaf water potential also influences stomatal behaviour. Since leaf water potential is a resultant of water uptake and storage by the plant and transpirational water loss, any factor which affects these processes, such as soil water availability, temperature, atmospheric humidity and air movement, may indirectly affect stomata. Some of these factors, such as temperature and possibly humidity, may affect stomata directly. These direct and indirect effects of environmental factors interact to give a net opening response upon which is superimposed a direct effect of stomatal circadian rhythmic activity.  相似文献   
70.
Embryogenic suspension cultures of domesticated carrot (Daucus carota L.) are characterized by the presence of proembryogenic masses (PEMs) from which somatic embryos develop under conditions of low cell density in the absence of phytohormones. A culture system, referred to as starting cultures, was developed that allowed analysis of the emergence of PEMs in newly initiated hypocotyl-derived suspension cultures. Embryogenic potential, reflected by the number of FEMs present, slowly increased in starting cultures over a period of six weeks. Addition of excreted, high-molecular-weight, heat-labile cell factors from an established embryogenic culture considerably accelerated the acquisition of embryogenic potential in starting cultures. Analysis of [35S]methionine-labeled proteins excreted into the medium revealed distinct changes concomitant with the acquisition of embryogenic potential in these cultures. Analysis of the pattern of gene expression by in-vitro translation of total cellular mRNA from starting cultures with different embryogenic potential and subsequent separation of the [35S]methionine-labeled products by two-dimensional polyacrylamide gel electrophoresis demonstrated a small number of abundant in-vitro-translation products to be present in somatic embryos and in embryogenic cells but absent in nonembryogenic cells. Several other in-vitro-translation products were present in explants, non-embryogenic and embryogenic cells but were absent in somatic embryos. Hybridization of an embryoregulated complementary-DNA sequence, Dc3, to RNA extracted from starting cultures showed that the corresponding gene is expressed in somatic embryos and PEMs but not in non-embryogenic cells.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - cDNA complementary DNA - PAGE polyacrylamide gel electrophoresis - PEM proembryogenic mass  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号