首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11177篇
  免费   908篇
  国内免费   534篇
  12619篇
  2024年   30篇
  2023年   122篇
  2022年   208篇
  2021年   273篇
  2020年   403篇
  2019年   505篇
  2018年   364篇
  2017年   317篇
  2016年   364篇
  2015年   391篇
  2014年   539篇
  2013年   718篇
  2012年   477篇
  2011年   544篇
  2010年   448篇
  2009年   576篇
  2008年   622篇
  2007年   608篇
  2006年   559篇
  2005年   474篇
  2004年   429篇
  2003年   362篇
  2002年   282篇
  2001年   252篇
  2000年   221篇
  1999年   280篇
  1998年   242篇
  1997年   193篇
  1996年   173篇
  1995年   174篇
  1994年   157篇
  1993年   136篇
  1992年   122篇
  1991年   134篇
  1990年   102篇
  1989年   105篇
  1988年   90篇
  1987年   105篇
  1986年   81篇
  1985年   78篇
  1984年   57篇
  1983年   35篇
  1982年   53篇
  1981年   44篇
  1980年   44篇
  1979年   36篇
  1978年   15篇
  1977年   15篇
  1976年   20篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
142.
Iron is one of the most important micronutrients for plants. Like other organisms, plants have developed active mechanisms for the acquisition of sufficient iron from the soil. Nevertheless, very little is known about the genetic mechanisms that control the active uptake. In tomato, two spontaneously derived mutants are available, which are defective in key steps that control this process. The recessive mutationchloronerva (chln) affects a gene which controls the synthesis of the non-protein amino acid nicotianamine (NA), a key component in the iron physiology of plants. The root system of the recessive mutantfer is unable to induce any of the characteristic responses to iron deficiency and iron uptake is thus completely blocked. We present a characterization of the double mutant, showing that thefer gene is epistatic over thechln gene and thus very likely to be one of the major genetic elements controlling iron physiology in tomato. In order to gain access to these two genes at the molecular level, both mutants were precisely mapped onto the high density RFLP map of tomato. Thechln gene is located on chromosome 1 and thefer gene is on chromosome 6 of tomato. Using this high-resolution map, a chromosome walk has been started to isolate thefer gene by map-based cloning. The isolation of thefer gene will provide new insights into the molecular mechanisms of iron uptake control in plants.  相似文献   
143.
144.
We examine how the distribution of a leafgalling aphid (Pemphigus betae) affects other species associated with natural stands of hybrid cottonwoods (Populus angustifolia x P. fremontii). Aphid transfers on common-garden clones and RFLP analysis show that resistance to aphids in cottonwoods is affected by plant genotype. Because susceptible trees typically support thousands of galls, while adjacent resistant trees have few or none, plant resistance traits that affect the distribution of this abundant herbivore may directly and/or indirectly affect other species. We found that the arthropod community of aphid-susceptible trees had 31% greater species richness and 26% greater relative abundance than aphid-resistant trees. To examine direct and indirect effects of plant resistance traits on other organisms, we experimentally excluded aphids and found that abundances and/or foraging behavior of arthropods, fungi, and birds were altered. First, exclusion of gall aphids on susceptible trees resulted in a 24% decrease in species richness and a 28% decrease in relative abundance of the arthropod community. Second, exclusion of aphids also caused a 2- to 3-fold decrease in foraging and/or presence of three taxa of aphid enemies: birds, fungi, and insects. Lastly, aphidexclussion resulted in a 2-fold increase in inquilines (animals who live in abodes properly belonging to another). We also found that fungi and birds responded to variation in gall density at the branch level. We conclude plant resistance traits affect diverse species from three trophic levels supporting a bottom-up influence of plants on community structure.  相似文献   
145.
Abstract.
  • 1 Seasonal population growth rates for the pea aphid, Acyrthosiphon pisum Harris, were determined in three different host plant habitats; alfalfa, Medicago sativa (L.), clover, Trifolium pratense (L.), and peas, Pisum sativum (L.); over four years and eight places. It was possible to estimate a common intrinsic rate of increase for each host plant habitat.
  • 2 An analysis of the relative influence of temporal, spatial and host plant habitat variation showed that the host plant habitat was most important in determining the growth rates of the populations, both in rate of build-up and decline.
  • 3 Patterns of alate production in the three different habitats differed substantially between the annual peas and the two perennial legumes. During the summer, alate production was large and rapid in peas and remained low and constant in clover and alfalfa
  • 4 Parasitism was highest in peas. The species composition of parasitoids differed between crops.
  • 5 Aphids in annual peas had a higher intrinsic rate of increase and a faster rate of decline than in the two perennial legumes. This explains the presence of both migratory and sedentary forms among pea aphids.
  相似文献   
146.
Summary A simple method using microcentrifuge tubes for determining fresh and dry weights, and collecting cell-free supernatant from plant suspension cultures is described. This method offers improvements in accuracy, precision, and time efficiency over traditional filtration methods. Using 4-day-old Nicotinia tabacum cultures, the centrifuge method was shown to remove 25% more of the interstitial water from cell aggregates compared to a suction filtration method, with significantly less variation in fresh weight data.  相似文献   
147.
Summary The simultaneous presence of 6-benzyladenine (BA) and sucrose in a Murashige and Skoog medium (SIM) during the initial stages of shoot initiation have been found to be obligatory for high-frequency shoot formation in the Capsicum annuum L. var. Sweet Banana upper hypocotyl explants. The explants are determined for shoot formation following a minimum of 8 days of culture on SIM. Deprivation of exogenous sucrose from day 6 to day 20 of culture had no effect on the shoot forming response of the explants. BA and sucrose appear to act independently on different aspects of the competence of explants to respond to SIM during shoot initiation.Abbreviations BA N6-benzyladenine - MS Murashige and Skoog medium - SIM shoot induction medium - HFM hormone free medium - SUC sucrose minus medium  相似文献   
148.
Summary Taxusbrevifolia is the source of paclitaxel (Taxol®), an anticancer drug. A method for regeneration ofTaxus brevifolia from immature zygotic embryos via somatic embryogenesis is described. Embryogenic callus tissues were obtained by culturing immature zygotic embryos on Lloyd and McCown medium (MCM) supplemented with 160 M 2,4-dichlorophenoxyacetic acid (2,4-D) + 5 M benzylaminopurine (BA) + 5 M naphthaleneacetic acid (NAA) for 4 weeks. Putative embryoids were obtained following transfer of cultures to MCM medium supplemented with 4 M BA + 5 M kinetin + 1 M NAA for 6 to 8 weeks. Conversion of embryos was obtained on MCM medium supplemented with 40 M abscisic acid (ABA) + 1% activated charcoal. Development of bipolar structures with recognizable shoot and root apices was observed in somatic embryos. Five percent of somatic embryos were regenerated into plantlets on half-strength growth regulator-free MCM medium.  相似文献   
149.
48例原发性闭经患者的细胞遗传学分析   总被引:9,自引:1,他引:8  
本文报告对48例原发闭经患者的临床和细胞遣传学分析,共发现染色体异常17例,占35.4%,其中包括45,X,7例;45,X/46,XX,2例;X染色体结构异常5例;核型中有Y染色体3例。讨论了原发闭经的细胞遗传学病因及异常核型与表型的关系。  相似文献   
150.
The influence exerted by Pseudomonas fluorescens, strain 63-28R, in stimulating plant defense reactions was investigated using an in-vitro system in which Ri T-DNA-transformed pea (Pisum sativum L.) roots were subsequently infected with Pythium ultimum. Cytological investigations of samples from P. fluorescens-inoculated roots revealed that the bacteria multiplied abundantly at the root surface and colonized a small number of epidermal and cortical cells. Penetration of the epidermis occurred through the openings made by the disruption of the fibrillar network at the junction of adjacent epidermal cell walls. Direct cell wall penetration was never observed and bacterial ingress into the root tissues proceeded via an intercellular route. Striking differences in the extent of fungal colonization were observed between bacterized and non-bacterized pea roots following inoculation with P. ultimum. In non-bacterized roots, the pathogen multiplied abundantly through most of the tissues while in bacterized roots, pathogen growth was restricted to the epidermis and the outer cortex. At the root surface, the bacteria interacted with the pathogen, in a way similar to that observed in dual culture tests. Most Pythium cells were severely damaged but fungal penetration by the bacteria was never observed. Droplets of the amorphous material formed upon interaction between the bacteria and the host root were frequently found at the fungal cell surface. Incubation of sections with a -1,4-exoglucanase-gold complex revealed that the cell wall of markedly altered Pythium hyphae was structurally preserved. Successful penetration of the root epidermis was achieved by the few hyphae of P. ultimum that could escape the first defensive line in the rhizosphere. Most hyphae of the pathogen that penetrated the epidermis exhibited considerable changes. The unusual occurrence of polymorphic wall appositions along the host epidermal cells was an indication that the host plant was signalled to defend itself through the elaboration of physical barriers.Abbreviations AGL Aplysia gonad lectin - PGPR plant growth-promoting rhizobacteria The authors wish to thank Sylvain Noël for excellent technical assistance. This study was supported by grants from the Fonds Québécois pour la formation de chercheurs et l'Aide à la Recherche (FCAR), the Natural Sciences and Engineering Council of Canada (NSERC) and the Ministère de l'Industrie, du Commerce, de la Science et de la Technologie (SYNERGIE).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号