首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24811篇
  免费   1292篇
  国内免费   3197篇
  2024年   41篇
  2023年   277篇
  2022年   438篇
  2021年   538篇
  2020年   533篇
  2019年   727篇
  2018年   586篇
  2017年   636篇
  2016年   724篇
  2015年   862篇
  2014年   1179篇
  2013年   1447篇
  2012年   1052篇
  2011年   1245篇
  2010年   1017篇
  2009年   1390篇
  2008年   1512篇
  2007年   1618篇
  2006年   1483篇
  2005年   1432篇
  2004年   1274篇
  2003年   1216篇
  2002年   926篇
  2001年   791篇
  2000年   670篇
  1999年   672篇
  1998年   690篇
  1997年   512篇
  1996年   525篇
  1995年   506篇
  1994年   448篇
  1993年   355篇
  1992年   326篇
  1991年   285篇
  1990年   228篇
  1989年   193篇
  1988年   196篇
  1987年   168篇
  1986年   115篇
  1985年   103篇
  1984年   80篇
  1983年   49篇
  1982年   55篇
  1981年   46篇
  1980年   40篇
  1979年   30篇
  1978年   15篇
  1977年   10篇
  1976年   14篇
  1950年   3篇
排序方式: 共有10000条查询结果,搜索用时 678 毫秒
111.
112.
113.
The ribulose-1,5-bisphosphate carboxylase (Rubisco) large- and small-subunit genes are encoded on the chloroplast genome of the eukaryotic chromophytic alga Olisthodiscus luteus. Northern blot experiments indicate that both genes are co-transcribed into a single (>6 kb) mRNA molecule. Clones from the O. luteus rbc gene region were constructed with deleted 5 non-coding regions and placed under control of the lac promoter, resulting in the expression of high levels of O. luteus Rubisco large and small subunits in Escherichia coli. Sucrose gradient centrifugation of soluble extracts fractionated a minute amount of carboxylase activity that cosedimented with native hexadecameric O. luteus Rubisco. Most of the large subunit synthesized in E. coli appeared insoluble or formed an aggregate with the small subunit possessing an altered charge: mass ratio compared to the native holoenzyme. The presence in O. luteus of a polypeptide that has an identical molecular mass and cross reacts with antiserum generated against pea large-subunit binding protein may indicate that a protein of similar function is required for Rubisco assembly in O. luteus.  相似文献   
114.
115.
To study the polymorphism of human cholinesterases (ChEs) at the levels of primary sequence and three-dimensional structure, a fragment of human butyrylcholinesterase (BuChE) cDNA was subcloned into the pEX bacterial expression vector and its polypeptide product analyzed. Immunoblot analysis revealed that the clone-produced BuChE peptides interact specifically with antibodies against human and Torpedo acetylcholinesterase (AChE). Rabbit polyclonal antibodies prepared against the purified clone-produced BuChE polypeptides interacted in immunoblots with denatured serum BuChE as well as with purified and denatured erythrocyte AChE. In contrast, native BuChE tetramers from human serum, but not AChE dimers from erythrocytes, interacted with these antibodies in solution to produce antibody-enzyme complexes that could be precipitated by second antibodies and that sedimented faster than the native enzyme in sucrose gradient centrifugation. Furthermore, both AChE and BuChE dimers from muscle extracts, but not BuChE tetramers from muscle, interacted with these antibodies. To reveal further whether the anti-cloned BuChE antibodies would interact in situ with ChEs in the neuromuscular junction, bundles of muscle fibers were microscopically dissected from the region in fetal human diaphragm that is innervated by the phrenic nerve. Muscle fibers incubated with the antibodies and with 125I-Protein A were subjected to emulsion autoradiography, followed by cytochemical ChE staining. The anti-cloned BuChE antibodies, as well as anti-Torpedo AChE antibodies, created patches of silver grains in the muscle endplate region stained for ChE, under conditions where control sera did not. These findings demonstrate that the various forms of human AChE and BuChE in blood and in neuromuscular junctions share sequence homologies, but also display structural differences between distinct molecular forms within particular tissues, as well as between similarly sedimenting molecular forms from different tissues.  相似文献   
116.
Summary The processing of LamB-IGF-1 fusion protein and the export of processed IGF-1 (insulin-like growth-factor-1) into the growth medium was examined in the Escherichia coli host strain, JM101. Several strain or plasmid modifications were tried to increase export of periplasmic (Processed) IGF-1 into the growth medium of JM101. These included: (1) use of a lon null mutant strain to increase accumulation levels of unprocessed LamB-IGF-1 fusion protein; (2) use of an alternative drug resistance marker on the expression plasmid rather than beta-lactamase, thereby reducing any competition for processing of LamB-IGF-1 by signal peptidase; (3) examination of whether phage M13 gene III protein expression caused more periplasmic IGF-1 to be exported into the growth medium due to increased outer membrane permeability; and (4) examination of the effect of E. coli or yeast optimized IGF-1 codons. None of these strain or plasmid modifications caused any significant increase in export of IGF-1 into the growth medium of JM101. Solubility studies of LamB-IGF-1 and processed IGF-1 showed that virtually all of the LamB-IGF-1 and IGF-1 remaining within the cell after a 2 h induction period was insoluble. This implied that only soluble LamB-IGF-1 was processed to IGF-1 and that only soluble IGF-1 was exported into the growth medium. Taken together, the results indicated that LamB-IGF-1 and IGF-1 solubility were the limiting factors in secretion of IGF-1 into the periplasm and export of IGF-1 into the growth medium.  相似文献   
117.
Summary Transposable element Activator (Ac) induced wild-type stable revertants, derived from McClintock's Dissociation (Ds) insertion shrunken (sh) mutant sh-m5933, have been examined for sucrose synthases, SS1 and SS2, encoded by the revertant (Sh) locus and the non-allelic gene Sus (previously designated as Ss2), respectively. A structurally normal Sh locus has been previously described in these revertants. Immuno-blot (Western) and Southern hybridization analyses reported here identify one of the nine alleles, Sh-r5, as unique for several features. It showed altered tissue specificity, as the SS1 protein encoded by the Sh-r5 allele was readily detectable in the immature embryo which is otherwise characterized by the Sus expression only. The level of Sh-r5 expression at the protein and enzyme level was marked by endosperm specific SS1 abundance and a significant down-regulation in the embryo similar to the standard Sh and Sus loci in endosperm and embryo, respectively. We infer that tissue specific levels of gene expression among maize Ss genes is significantly determined by trans-regulatory factors present in these two tissues. The Sh-r5 strain also exhibited a complete loss of the Sus expression in all tissues tested in the plant. Lack of any detectable phenotypic abnormality in the Sh-r5 strain due to the loss of SS2 protein indicated that either the SS2 protein is nonessential or that the two SS isozymes are functionally compensatory. Genomic filter hybridizations with the Sus cDNA clone indicated that the Sus locus in the Sh-r5 strain was not deleted and was, in fact, unique among these revertants. Together, these data provide an unusual insight into the regulation and function of the two SS isozymes in the maize plant.  相似文献   
118.
Summary A methionine-rich 10 kDa zein storage protein from maize was isolated and the sequence of the N-terminal 30 amino acids was determined. Based on the amino acid sequence, two mixed oligonucleotides were synthesized and used to probe a maize endosperm cDNA library. A fulllength cDNA clone encoding the 10 kDa zein was isolated by this procedure. The nucleotide sequence of the cDNA clone predicts a polypeptide of 129 amino acids, preceded by a signal peptide of 21 amino acids. The predicted polypeptide is unique in its extremely high content of methionine (22.5%). The maize inbred line BSSS-53, which has increased seed methionine due to overproduction of this protein, was compared to W23, a standard inbred line. Northern blot analysis showed that the relative RNA levels for the 10 kDa zein were enhanced in developing seeds of BSSS-53, providing a molecular basis for the overproduction of the protein. Southern blot analysis indicated that there are one or two 10 kDa zein genes in the maize genome.  相似文献   
119.
Summary The relationship between the promoter length of the Kluyveromyces fragilis -glucosidase gene and the level of its expression in Saccharomyces cerevisiae was studied by gene fusion between deleted promoter fragments of various lengths and the promoterless -galactosidase gene of Escherichia coli. The removal of a region from position-425 to-232 led to a tenfold increase in the expression of the gene. The same results were obtained for the reconstructed -glucosidase gene with the same promoter length. It is likely that the deletion of this part of the promoter removes negative regulatory elements which are functional in Saccharomyces cerevisiae. This increase in activity is the main event which may explain the high increase in gene expression (60-fold) previously observed for an upstream deletion obtained during subcloning experiments of the -glucosidase gene. It is also shown that the expression of the gene greatly depends upon the nature of the recipient strain, the growth phase of the cell and that of the vector carrying it.  相似文献   
120.
Summary A selection by glucosamine for mutants of Hansenula polymorpha insensitive to glucose repression of methanol assimilation is described. Constitutive synthesis of enzymes is established in standard batch cultures of glucosegrown cells. Upon prolonged glucose metabolism the phenotype is masked by catabolite inactivation and degradation of enzymes. Addition of the substrate methanol remarkably improves constitutive synthesis by preventing catabolite inactivation and delaying degradation. Regular peroxisomes of reduced number are formed in mutant cells under repressed conditions. No constitutive synthesis is detectable using ethanol as a carbon source. In addition, this alcohol is detrimental to growth of the mutants, indicating that H. polymorpha is constrained to repress synthesis of enzymes involved in the C1-metabolism when ethanol is present as a substrate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号