首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24776篇
  免费   2709篇
  国内免费   3351篇
  2024年   115篇
  2023年   597篇
  2022年   725篇
  2021年   899篇
  2020年   1109篇
  2019年   1319篇
  2018年   1023篇
  2017年   1090篇
  2016年   1114篇
  2015年   1151篇
  2014年   1348篇
  2013年   1607篇
  2012年   1159篇
  2011年   1203篇
  2010年   1072篇
  2009年   1432篇
  2008年   1483篇
  2007年   1595篇
  2006年   1417篇
  2005年   1175篇
  2004年   994篇
  2003年   918篇
  2002年   698篇
  2001年   754篇
  2000年   670篇
  1999年   619篇
  1998年   539篇
  1997年   399篇
  1996年   354篇
  1995年   300篇
  1994年   307篇
  1993年   225篇
  1992年   181篇
  1991年   170篇
  1990年   163篇
  1989年   120篇
  1988年   103篇
  1987年   118篇
  1986年   87篇
  1985年   75篇
  1984年   65篇
  1983年   51篇
  1982年   69篇
  1981年   51篇
  1980年   47篇
  1979年   38篇
  1978年   24篇
  1977年   19篇
  1976年   16篇
  1975年   5篇
排序方式: 共有10000条查询结果,搜索用时 564 毫秒
71.
72.
Understanding drivers of biodiversity patterns is of prime importance in this era of severe environmental crisis. More diverse plant communities have been postulated to represent a larger functional trait‐space, more likely to sustain a diverse assembly of herbivore species. Here, we expand this hypothesis to integrate environmental, functional and phylogenetic variation of plant communities as factors explaining the diversity of lepidopteran assemblages along elevation gradients in the Swiss Western Alps. According to expectations, we found that the association between butterflies and their host plants is highly phylogenetically structured. Multiple regression analyses showed the combined effect of climate, functional traits and phylogenetic diversity in structuring butterfly communities. Furthermore, we provide the first evidence that plant phylogenetic beta diversity is the major driver explaining butterfly phylogenetic beta diversity. Along ecological gradients, the bottom up control of herbivore diversity is thus driven by phylogenetically structured turnover of plant traits as well as environmental variables.  相似文献   
73.
74.
Bradyrhizobium are N2-fixing microsymbionts of legumes with relevant applications in agricultural sustainability, and we investigated the phylogenetic relationships of conserved and symbiotic genes of 21 bradyrhizobial strains. The study included strains from Western Australia (WA), isolated from nodules of Glycine spp. the country is one genetic center for the genus and from nodules of other indigenous legumes grown in WA, and strains isolated from forage Glycine sp. grown in South Africa. The 16S rRNA phylogeny divided the strains in two superclades, of B. japonicum and B. elkanii, but with low discrimination among the species. The multilocus sequence analysis (MLSA) with four protein-coding housekeeping genes (dnaK, glnII, gyrB and recA) pointed out seven groups as putative new species, two within the B. japonicum, and five within the B. elkanii superclades. The remaining eleven strains showed higher similarity with six species, B. lupini, B. liaoningense, B. yuanmingense, B. subterraneum, B. brasilense and B. retamae. Phylogenetic analysis of the nodC symbiotic gene clustered 13 strains in three different symbiovars (sv. vignae, sv. genistearum and sv. retamae), while seven others might compose new symbiovars. The genetic profiles of the strains evaluated by BOX-PCR revealed high intra- and interspecific diversity. The results point out the high level of diversity still to be explored within the Bradyrhizobium genus, and further studies might confirm new species and symbiovars.  相似文献   
75.
Seven hundred and fifty-two rhizobacteria were isolated from 186 rhizosphere soil samples collected across tomato growing regions of Karnataka. Among them, 26% strains were Gram positive and other 74% were Gram negative and dominant being Bacillus and Pseudomonas. Sampling of different locations showed variation in species richness and diversity indices. Similarity matrix computed with Jaccard’s coefficient and principle coordinate analysis to correlate bacterial diversity revealed that rhizobacterial genera of Mysore, Mandya and Kolar soil samples were very closely related and rarefaction curve analysis indicated that these soil samples also harbored higher number of rhizobacteria which included all the genera studied. PGPR trait analysis revealed that most of the rhizobacteria were endowed with more than one beneficial trait which may act individually or simultaneously, and indole acetic acid production and phosphate solubilization are the two predominant traits exhibited by these rhizobacteria. Rhizobacterial isolates also showed a varied level of plant growth promotion traits and offered protection against fungal origin foliar and root pathogens. Among the nine regions studied, Mysore, Mandya and Kolar regions recorded higher percentage of promising PGPRs in comparison with other regions studied of Karnataka.  相似文献   
76.
77.
78.
Although Ficus (Moraceae) is a keystone plant genus in the tropics, providing resources to many frugivorous vertebrates, its population genetic structure, which is an important determinant of its long‐term survival, has rarely been investigated. We examined the population genetic structure of two dioecious fig species (Ficus hispida and Ficus exasperata) in the Indian Western Ghats using co‐dominant nuclear microsatellite markers. We found high levels of microsatellite genetic diversity in both species. The regression slopes between genetic relationship coefficients (fij) and spatial distances were significantly negative in both species indicating that, on average, individuals in close spatial proximity were more likely to be related than individuals further apart. Mean parent–offspring distance (σ) calculated using these slopes was about 200 m in both species. This should be contrasted with the very long pollen dispersal distances documented for monoecious Ficus species. Nevertheless, overall population genetic diversity remained large suggesting immigrant gene flow. Further studies will be required to analyze broader scale patterns.  相似文献   
79.
Tetrapod biodiversity today is great; over the past 400 Myr since vertebrates moved onto land, global tetrapod diversity has risen exponentially, punctuated by losses during major extinctions. There are links between the total global diversity of tetrapods and the diversity of their ecological roles, yet no one fully understands the interplay of these two aspects of biodiversity and a numerical analysis of this relationship has not so far been undertaken. Here we show that the global taxonomic and ecological diversity of tetrapods are closely linked. Throughout geological time, patterns of global diversity of tetrapod families show 97 per cent correlation with ecological modes. Global taxonomic and ecological diversity of this group correlates closely with the dominant classes of tetrapods (amphibians in the Palaeozoic, reptiles in the Mesozoic, birds and mammals in the Cenozoic). These groups have driven ecological diversity by expansion and contraction of occupied ecospace, rather than by direct competition within existing ecospace and each group has used ecospace at a greater rate than their predecessors.  相似文献   
80.
Contrary to highly selected commercial breeds, indigenous domestic breeds are composed of semi-wild or feral populations subjected to reduced levels of artificial selection. As a consequence, many of these breeds have become locally adapted to a wide range of environments, showing high levels of phenotypic variability and increased fitness under natural conditions. Genetic analyses of three loci associated with milk production (alpha(S1)-casein, kappa-casein and prolactin) and the locus BoLA-DRB3 of the major histocompatibility complex indicated that the Argentinean Creole cattle (ACC), an indigenous breed from South America, maintains high levels of genetic diversity and population structure. In contrast to the commercial Holstein breed, the ACC showed considerable variation in heterozygosity (H(e)) and allelic diversity (A) across populations. As expected, bi-allelic markers showed extensive variation in He whereas the highly polymorphic BoLA-DRB3 showed substantial variation in A, with individual populations having 39-74% of the total number of alleles characterized for the breed. An analysis of molecular variance (AMOVA) of nine populations throughout the distribution range of the ACC revealed that 91.9-94.7% of the total observed variance was explained by differences within populations whereas 5.3-8.1% was the result of differences among populations. In addition, the ACC breed consistently showed higher levels of genetic differentiation among populations than Holstein. Results from this study emphasize the importance of population genetic structure within domestic breeds as an essential component of genetic diversity and suggest that indigenous breeds may be considered important reservoirs of genetic diversity for commercial domestic species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号