首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2180篇
  免费   17篇
  国内免费   12篇
  2024年   1篇
  2023年   4篇
  2022年   5篇
  2021年   16篇
  2020年   28篇
  2019年   28篇
  2018年   37篇
  2017年   29篇
  2016年   17篇
  2015年   111篇
  2014年   311篇
  2013年   275篇
  2012年   305篇
  2011年   427篇
  2010年   284篇
  2009年   38篇
  2008年   58篇
  2007年   27篇
  2006年   37篇
  2005年   24篇
  2004年   25篇
  2003年   24篇
  2002年   16篇
  2001年   5篇
  2000年   7篇
  1999年   4篇
  1998年   6篇
  1997年   5篇
  1996年   8篇
  1995年   7篇
  1994年   8篇
  1993年   8篇
  1992年   6篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有2209条查询结果,搜索用时 31 毫秒
201.
Exocytosis is one of the most fundamental cellular events. The basic mechanism of the final step, membrane fusion, is mediated by the formation of the SNARE complex, which is modulated by the phosphorylation of proteins controlled by the concerted actions of protein kinases and phosphatases. We have previously shown that a protein phosphatase-1 (PP1) anchoring protein, phospholipase C-related but catalytically inactive protein (PRIP), has an inhibitory role in regulated exocytosis. The current study investigated the involvement of PRIP in the phospho-dependent modulation of exocytosis. Dephosphorylation of synaptosome-associated protein of 25 kDa (SNAP-25) was mainly catalyzed by PP1, and the process was modulated by wild-type PRIP but not by the mutant (F97A) lacking PP1 binding ability in in vitro studies. We then examined the role of PRIP in phospho-dependent regulation of exocytosis in cell-based studies using pheochromocytoma cell line PC12 cells, which secrete noradrenalin. Exogenous expression of PRIP accelerated the dephosphorylation process of phosphorylated SNAP-25 after forskolin or phorbol ester treatment of the cells. The phospho-states of SNAP-25 were correlated with noradrenalin secretion, which was enhanced by forskolin or phorbol ester treatment and modulated by PRIP expression in PC12 cells. Both SNAP-25 and PP1 were co-precipitated in anti-PRIP immunocomplex isolated from PC12 cells expressing PRIP. Collectively, together with our previous observation regarding the roles of PRIP in PP1 regulation, these results suggest that PRIP is involved in the regulation of the phospho-states of SNAP-25 by modulating the activity of PP1, thus regulating exocytosis.  相似文献   
202.
203.
Increased contraction enhances substrate uptake into cardiomyocytes via translocation of the glucose transporter GLUT4 and the long chain fatty acid (LCFA) transporter CD36 from intracellular stores to the sarcolemma. Additionally, contraction activates the signaling enzymes AMP-activated protein kinase (AMPK) and protein kinase D1 (PKD1). Although AMPK has been implicated in contraction-induced GLUT4 and CD36 translocation in cardiomyocytes, the precise role of PKD1 in these processes is not known. To study this, we triggered contractions in cardiomyocytes by electric field stimulation (EFS). First, the role of PKD1 in GLUT4 and CD36 translocation was defined. In PKD1 siRNA-treated cardiomyocytes as well as cardiomyocytes from PKD1 knock-out mice, EFS-induced translocation of GLUT4, but not CD36, was abolished. In AMPK siRNA-treated cardiomyocytes and cardiomyocytes from AMPKα2 knock-out mice, both GLUT4 and CD36 translocation were abrogated. Hence, unlike AMPK, PKD1 is selectively involved in glucose uptake. Second, we analyzed upstream factors in PKD1 activation. Cardiomyocyte contractions enhanced reactive oxygen species (ROS) production. Using ROS scavengers, we found that PKD1 signaling and glucose uptake are more sensitive to changes in intracellular ROS than AMPK signaling or LCFA uptake. Furthermore, silencing of death-activated protein kinase (DAPK) abrogated EFS-induced GLUT4 but not CD36 translocation. Finally, possible links between PKD1 and AMPK signaling were investigated. PKD1 silencing did not affect AMPK activation. Reciprocally, AMPK silencing did not alter PKD1 activation. In conclusion, we present a novel contraction-induced ROS-DAPK-PKD1 pathway in cardiomyocytes. This pathway is activated separately from AMPK and mediates GLUT4 translocation/glucose uptake, but not CD36 translocation/LCFA uptake.  相似文献   
204.
Protein kinase C (PKC) signaling can be activated rapidly by 17β-estradiol (E(2)) via nontraditional signaling in ERα-positive MCF7 and ERα-negative HCC38 breast cancer cells and is associated with tumorigenicity. Additionally, E(2) has been shown to elicit anti-apoptotic effects in cancer cells counteracting pro-apoptotic effects of chemotherapeutics. Supporting evidence suggests the existence of a membrane-associated ER that differs from the traditional receptors, ERα and ERβ. Our aim was to identify the ER responsible for rapid PKC activation and to evaluate downstream effects, such as proliferation, apoptosis, and metastasis. RT-PCR, Western blot, and immunofluorescence were used to determine the presence of ER splice variants in multiple cell lines. E(2) effects on PKC activity were measured with and without ER-blocking antibodies. Cell proliferation was determined by [(3)H]thymidine incorporation, and cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, (MTT) whereas apoptosis was determined by DNA fragmentation and TUNEL. Quantitative RT-PCR and sandwich ELISA were used to determine the effects on metastatic factors. The role of membrane-dependent signaling in cancer cell invasiveness was examined using an in vitro assay. The results indicate the presence of an ERα splice variant, ERα36, in ERα-positive MCF7 and ERα-negative HCC38 breast cancer cells, which localized to plasma membranes and rapidly activated PKC in response to E(2), leading to deleterious effects such as enhancement of proliferation, protection against apoptosis, and enhancement of metastatic factors. These findings propose ERα36 as a novel target for the development of therapies that can prevent progression of breast cancer in the primary tumor as well as during metastasis.  相似文献   
205.
Tideglusib is a GSK-3 inhibitor currently in phase II clinical trials for the treatment of Alzheimer disease and progressive supranuclear palsy. Sustained oral administration of the compound to a variety of animal models decreases Tau hyperphosphorylation, lowers brain amyloid plaque load, improves learning and memory, and prevents neuronal loss. We report here that tideglusib inhibits GSK-3β irreversibly, as demonstrated by the lack of recovery in enzyme function after the unbound drug has been removed from the reaction medium and the fact that its dissociation rate constant is non-significantly different from zero. Such irreversibility may explain the non-competitive inhibition pattern with respect to ATP shown by tideglusib and perhaps other structurally related compounds. The replacement of Cys-199 by an Ala residue in the enzyme seems to increase the dissociation rate, although the drug retains its inhibitory activity with decreased potency and long residence time. In addition, tideglusib failed to inhibit a series of kinases that contain a Cys homologous to Cys-199 in their active site, suggesting that its inhibition of GSK-3β obeys to a specific mechanism and is not a consequence of nonspecific reactivity. Results obtained with [(35)S]tideglusib do not support unequivocally the existence of a covalent bond between the drug and GSK-3β. The irreversibility of the inhibition and the very low protein turnover rate observed for the enzyme are particularly relevant from a pharmacological perspective and could have significant implications on its therapeutic potential.  相似文献   
206.
207.
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase family and is highly expressed in brain and hematopoietic cells. Pyk2 plays diverse functions in cells, including the regulation of cell adhesion, migration, and cytoskeletal reorganization. In the brain, it is involved in the induction of long term potentiation through regulation of N-methyl-d-aspartate receptor trafficking. This occurs through the phosphorylation and activation of Src family tyrosine kinase members, such as Fyn, that phosphorylate GluN2B at Tyr(1472). Phosphorylation at this site leads to exocytosis of GluN1-GluN2B receptors to synaptic membranes. Pyk2 activity is modulated by phosphorylation at several critical tyrosine sites, including Tyr(402). In this study, we report that Pyk2 is a substrate of striatal-enriched protein-tyrosine phosphatase (STEP). STEP binds to and dephosphorylates Pyk2 at Tyr(402). STEP KO mice showed enhanced phosphorylation of Pyk2 at Tyr(402) and of the Pyk2 substrates paxillin and ASAP1. Functional studies indicated that STEP opposes Pyk2 activation after KCl depolarization of cortical slices and blocks Pyk2 translocation to postsynaptic densities, a key step required for Pyk2 activation and function. This is the first study to identify Pyk2 as a substrate for STEP.  相似文献   
208.
Atypical protein kinase C (aPKC) controls cell polarity by modulating substrate cortical localization. Aberrant aPKC activity disrupts polarity, yet the mechanisms that control aPKC remain poorly understood. We used a reconstituted system with purified components and a cultured cell cortical displacement assay to investigate aPKC regulation. We find that aPKC is autoinhibited by two domains within its NH(2)-terminal regulatory half, a pseudosubstrate motif that occupies the kinase active site, and a C1 domain that assists in this process. The Par complex member Par-6, previously thought to inhibit aPKC, is a potent activator of aPKC in our assays. Par-6 and aPKC interact via PB1 domain heterodimerization, and this interaction activates aPKC by displacing the pseudosubstrate, although full activity requires the Par-6 CRIB-PDZ domains. We propose that, along with its previously described roles in controlling aPKC localization, Par-6 allosterically activates aPKC to allow for high spatial and temporal control of substrate phosphorylation and polarization.  相似文献   
209.
Calmodulin (CaM) is the major component of calcium signaling pathways mediating the action of various effectors. Transient increases in the intracellular calcium level triggered by a variety of stimuli lead to the formation of Ca(2+)/CaM complexes, which interact with and activate target proteins. In the present study the role of Ca(2+)/CaM in the regulation of the ligand-dependent activation of the epidermal growth factor receptor (EGFR) has been examined in living cells. We show that addition of different cell permeable CaM antagonists to cultured cells or loading cells with a Ca(2+) chelator inhibited ligand-dependent EGFR auto(trans)phosphorylation. This occurred also in the presence of inhibitors of protein kinase C, CaM-dependent protein kinase II and calcineurin, which are known Ca(2+)- and/or Ca(2+)/CaM-dependent EGFR regulators, pointing to a direct effect of Ca(2+)/CaM on the receptor. Furthermore, we demonstrate that down-regulation of CaM in conditional CaM knock out cells stably transfected with the human EGFR decreased its ligand-dependent phosphorylation. Substitution of six basic amino acid residues within the CaM-binding domain (CaM-BD) of the EGFR by alanine resulted in a decreased phosphorylation of the receptor and of its downstream substrate phospholipase Cγ1. These results support the hypothesis that Ca(2+)/CaM regulates the EGFR activity by directly interacting with the CaM-BD of the receptor located at its cytosolic juxtamembrane region.  相似文献   
210.
PP5 is a unique member of serine/threonine phosphatases comprising a regulatory tetratricopeptide repeat (TPR) domain and functions in signaling pathways that control many cellular responses. We reported previously that Ca(2+)/S100 proteins directly associate with several TPR-containing proteins and lead to dissociate the interactions of TPR proteins with their client proteins. Here, we identified protein phosphatase 5 (PP5) as a novel target of S100 proteins. In vitro binding studies demonstrated that S100A1, S100A2, S100A6, and S100B proteins specifically interact with PP5-TPR and inhibited the PP5-Hsp90 interaction. In addition, the S100 proteins activate PP5 by using a synthetic phosphopeptide and a physiological protein substrate, Tau. Overexpression of S100A1 in COS-7 cells induced dephosphorylation of Tau. However, S100A1 and permanently active S100P inhibited the apoptosis signal-regulating kinase 1 (ASK1) and PP5 interaction, resulting the inhibition of dephosphorylation of phospho-ASK1 by PP5. The association of the S100 proteins with PP5 provides a Ca(2+)-dependent regulatory mechanism for the phosphorylation status of intracellular proteins through the regulation of PP5 enzymatic activity or PP5-client protein interaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号