首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2180篇
  免费   17篇
  国内免费   12篇
  2024年   1篇
  2023年   4篇
  2022年   5篇
  2021年   16篇
  2020年   28篇
  2019年   28篇
  2018年   37篇
  2017年   29篇
  2016年   17篇
  2015年   111篇
  2014年   311篇
  2013年   275篇
  2012年   305篇
  2011年   427篇
  2010年   284篇
  2009年   38篇
  2008年   58篇
  2007年   27篇
  2006年   37篇
  2005年   24篇
  2004年   25篇
  2003年   24篇
  2002年   16篇
  2001年   5篇
  2000年   7篇
  1999年   4篇
  1998年   6篇
  1997年   5篇
  1996年   8篇
  1995年   7篇
  1994年   8篇
  1993年   8篇
  1992年   6篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
  1974年   2篇
排序方式: 共有2209条查询结果,搜索用时 15 毫秒
151.
A theme emerging during the past few years is that members of the small leucine-rich proteoglycan gene family affect cell growth by interacting with multiple receptor tyrosine kinases (RTKs), mostly by a physical down-regulation of the receptors, thereby depriving tumor cells of pro-survival signals. Decorin binds and down-regulates several RTKs, including Met, the receptor for hepatocyte growth factor. Here we demonstrate that decorin blocks several biological activities mediated by the Met signaling axis, including cell scatter, evasion, and migration. These effects were mediated by a profound down-regulation of noncanonical β-catenin levels. In addition, Myc, a downstream target of β-catenin, was markedly down-regulated by decorin, whereas phosphorylation of Myc at threonine 58 was markedly induced. The latter is known to destabilize Myc and target it for proteasomal degradation. We also discovered that systemic delivery of decorin using three distinct tumor xenograft models caused down-regulation of Met and a concurrent suppression of β-catenin and Myc levels. We found that decorin protein core labeled with the near infrared dye IR800 specifically targeted the tumor cells expressing Met. Even 68-h post-injection, decorin was found to reside within the tumor xenografts with little or no binding to other tissues. Collectively, our results indicate a role for a secreted proteoglycan in suppressing the expression of key oncogenic factors required for tumor progression.  相似文献   
152.
Although load-induced mechanical signals play a key role in bone formation and maintenance of bone mass and structure, the cellular mechanisms involved in the translation of these signals are still not well understood. Recent identification of a novel flow-induced mechanosignaling pathway involving VEGF in osteoblasts and the known VEGF regulation of actin reorganization in various cell types has led us to hypothesize that fluid shear stress-induced Vegf up-regulation underlies the actin cytoskeleton adaptation observed in osteoblasts during mechanotransduction. Our results show that MC3T3-E1 cells secrete significant VEGF in response to 5 h of pulsatile fluid shear stress (PFSS; 5 dynes/cm2 at 1 Hz), whereas expression of VEGF receptors (VEGFR-1, VEGFR-2, or NRP1) is unaffected. These receptors, in particular VEGFR-2, participate in PFSS-induced VEGF release. Exposure to flow-conditioned medium or exogenous VEGF significantly induces stress fiber formation in osteoblasts that is comparable with PFSS-induced stress fiber formation, whereas VEGF knockdown abrogates this response to PFSS, thereby providing evidence that flow-induced VEGF release plays a role in actin polymerization. Using neutralizing antibodies against the receptors and VEGF isoforms, we found that soluble VEGFs, in particular VEGF164, play a crucial role in transient stress fiber formation during osteoblast mechanotransduction, most likely through VEGFR-2 and NRP1. Based on these data we conclude that flow-induced VEGF release from osteoblasts regulates osteoblast actin adaptation during mechanotransduction and that VEGF paracrine signaling may provide potent cross-talk among bone cells and endothelial cells that is essential for fracture healing, bone remodeling, and osteogenesis.  相似文献   
153.
Lamin B receptor (LBR), a chromatin and lamin B-binding protein in the inner nuclear membrane, has been proposed to target the membrane precursor vesicles to chromatin mediated by importin β during the nuclear envelope (NE) assembly. However, the mechanisms for the binding of LBR with importin β and the membrane targeting by LBR in NE assembly remain largely unknown. In this report, we show that the amino acids (aa) 69–90 of LBR sequences are required to bind with importin β at aa 45–462, and the binding is essential for the NE membrane precursor vesicle targeting to the chromatin during the NE assembly at the end of mitosis. We also show that this binding is cell cycle-regulated and dependent on the phosphorylation of LBR Ser-71 by p34cdc2 kinase. RNAi knockdown of LBR causes the NE assembly failure and abnormal chromatin decondensation of the daughter cell nuclei, leading to the daughter cell death at early G1 phase by apoptosis. Perturbation of the interaction of LBR with importin β by deleting the LBR N-terminal spanning region or aa 69–73 also induces the NE assembly failure, the abnormal chromatin decondensation, and the daughter cell death. The first transmembrane domain of LBR promotes the NE production and expansion, because overexpressing this domain is sufficient to induce membrane overproduction of the NE. Thus, these results demonstrate that LBR targets the membrane precursor vesicles to chromatin by interacting with importin β in a LBR phosphorylation-dependent manner during the NE assembly at the end of mitosis and that the first transmembrane domain of LBR promotes the LBR-bearing membrane production and the NE expansion in interphase.  相似文献   
154.
Non-small cell lung cancer (NSCLC) has a poor prognosis and improved therapies are needed. Expression of EphA2 is increased in NSCLC metastases. In this study, we investigated EphA2 mutations in NSCLC and examined molecular pathways involved in NSCLC. Tumor and cell line DNA was sequenced. One EphA2 mutation was modeled by expression in BEAS2B cells, and functional and biochemical studies were conducted. A G391R mutation was detected in H2170 and 2/28 squamous cell carcinoma patient samples. EphA2 G391R caused constitutive activation of EphA2 with increased phosphorylation of Src, cortactin, and p130Cas. Wild-type (WT) and G391R cells had 20 and 40% increased invasiveness; this was attenuated with knockdown of Src, cortactin, or p130Cas. WT and G391R cells demonstrated a 70% increase in focal adhesion area. Mammalian target of rapamycin (mTOR) phosphorylation was increased in G391R cells with increased survival (55%) compared with WT (30%) and had increased sensitivity to rapamycin. A recurrent EphA2 mutation is present in lung squamous cell carcinoma and increases tumor invasion and survival through activation of focal adhesions and actin cytoskeletal regulatory proteins as well as mTOR. Further study of EphA2 as a therapeutic target is warranted.  相似文献   
155.
The main aim of our study is to determine the significance of the stromal microenvironment in the malignant behavior of prostate cancer. The stroma-derived growth factors/cytokines and hyaluronan act in autocrine/paracrine ways with their receptors, including receptor-tyrosine kinases and CD44 variants (CD44v), to potentiate and support tumor epithelial cell survival. Overexpression of hyaluronan, CD44v9 variants, and stroma-derived growth factors/cytokines are specific features in many cancers, including prostate cancer. Androgen/androgen receptor interaction has a critical role in regulating prostate cancer growth. Our previous study showed that 1) that increased synthesis of hyaluronan in normal epithelial cells promotes expression of CD44 variants; 2) hyaluronan interaction with CD44v6-v9 promotes activation of receptor-tyrosine kinase, which stimulates phosphatidylinositol 3-kinase-induced cell survival pathways; and 3) CD44v6/short hairpin RNA reduces colon tumor growth in vivo (Misra, S., Hascall, V. C., De Giovanni, C., Markwald, R. R., and Ghatak, S. (2009) J. Biol. Chem. 284, 12432–12446). Our results now show that hepatocyte growth factor synthesized by myofibroblasts associated with prostate cancer cells induces activation of HGF-receptor/cMet and stimulates hyaluronan/CD44v9 signaling. This, in turn, stabilizes the androgen receptor functions in prostate cancer cells. The stroma-derived HGF induces a lipid raft-associated signaling complex that contains CD44v9, cMet/phosphatidylinositol 3-kinase, HSP90 and androgen receptor. CD44v9/short hairpin RNA reverses the assembly of these components in the complex and inhibits androgen receptor function. Our results provide new insight into the hyaluronan/CD44v9-regulated androgen receptor function and the consequent malignant activities in prostate cancer cells. The present study describes a physiologically relevant in vitro model for studying the molecular mechanisms by which stroma-derived HGF and hyaluronan influence androgen receptor and CD44 functions in the secretory epithelia during prostate carcinogenesis.  相似文献   
156.
157.
Tonic inhibition in the brain is mediated largely by specialized populations of extrasynaptic receptors, γ-aminobutyric acid receptors (GABA(A)Rs). In the dentate gyrus region of the hippocampus, tonic inhibition is mediated primarily by GABA(A)R subtypes assembled from α4β2/3 with or without the δ subunit. Although the gating of these receptors is subject to dynamic modulation by agents such as anesthetics, barbiturates, and neurosteroids, the cellular mechanisms neurons use to regulate their accumulation on the neuronal plasma membrane remain to be determined. Using immunoprecipitation coupled with metabolic labeling, we demonstrate that the α4 subunit is phosphorylated at Ser(443) by protein kinase C (PKC) in expression systems and hippocampal slices. In addition, the β3 subunit is phosphorylated on serine residues 408/409 by PKC activity, whereas the δ subunit did not appear to be a PKC substrate. We further demonstrate that the PKC-dependent increase of the cell surface expression of α4 subunit-containing GABA(A)Rs is dependent on Ser(443). Mechanistically, phosphorylation of Ser(443) acts to increase the stability of the α4 subunit within the endoplasmic reticulum, thereby increasing the rate of receptor insertion into the plasma membrane. Finally, we show that phosphorylation of Ser(443) increases the activity of α4 subunit-containing GABA(A)Rs by preventing current run-down. These results suggest that PKC-dependent phosphorylation of the α4 subunit plays a significant role in enhancing the cell surface stability and activity of GABA(A)R subtypes that mediate tonic inhibition.  相似文献   
158.
The completion of the Plasmodium (malaria) life cycle in the mosquito requires the parasite to traverse first the midgut and later the salivary gland epithelium. We have identified a putative kinase-related protein (PKRP) that is predicted to be an atypical protein kinase, which is conserved across many species of Plasmodium. The pkrp gene encodes a RNA of about 5300 nucleotides that is expressed as a 90 kDa protein in sporozoites. Targeted disruption of the pkrp gene in Plasmodium berghei, a rodent model of malaria, compromises the ability of parasites to infect different tissues within the mosquito host. Early infection of mosquito midgut is reduced by 58-71%, midgut oocyst production is reduced by 50-90% and those sporozoites that are produced are defective in their ability to invade mosquito salivary glands. Midgut sporozoites are not morphologically different from wild-type parasites by electron microscopy. Some sporozoites that emerged from oocysts were attached to the salivary glands but most were found circulating in the mosquito hemocoel. Our findings indicate that a signalling pathway involving PbPKRP regulates the level of Plasmodium infection in the mosquito midgut and salivary glands.  相似文献   
159.
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号