首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   268篇
  免费   34篇
  国内免费   10篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   4篇
  2018年   6篇
  2017年   5篇
  2016年   5篇
  2015年   7篇
  2014年   10篇
  2013年   14篇
  2012年   9篇
  2011年   13篇
  2010年   9篇
  2009年   8篇
  2008年   11篇
  2007年   15篇
  2006年   27篇
  2005年   17篇
  2004年   24篇
  2003年   19篇
  2002年   23篇
  2001年   10篇
  2000年   13篇
  1999年   14篇
  1998年   9篇
  1997年   9篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有312条查询结果,搜索用时 31 毫秒
91.
In proteins, the proline ring exists predominantly in two discrete states. However, there is also a small but significant amount of flexibility in the proline ring of high-resolution protein structures. We have found that this side-chain flexibility is coupled to the backbone conformation. To study this coupling, we have developed a model that is simply based on geometric and steric factors and not on energetics. We show that the coupling between phi and chi1 torsions in the proline ring can be described by an analytic equation that was developed by Bricard in 1897, and we describe a computer algorithm that implements the equation. The model predicts the observed coupling very well. The strain in the C(gamma)-C(delta)-N angle appears to be the principal barrier between the UP and DOWN pucker. This strain is relaxed to allow the proline ring to flatten in the rare PLANAR conformation.  相似文献   
92.
Both NMR and IR studies of carbonyl (13C') isotopomers of designed helices can provide residue-level details regarding the fractional occurrence and melting behavior of helical phi/psi angles along the sequence of helical peptides, details that cannot be obtained from CD or 1H-NMR studies. We have studied a classic series of helical models, Ac-YGG-(KAXAA)3K-NH2 (X=A,V), in both aqueous and helix-favoring media containing fluoroalcohol cosolvents, including a solvent system allowing the observation of cold denaturation. These studies confirmed the strong N-capping associated with this sequence and revealed more extensive C-terminal fraying than that calculated using current helicity prediction algorithms. In the X=A series, the central residues are somewhat resistant to thermal melting; it instead occurs predominantly at the frayable C terminus. For the X=V series under cold-denaturing conditions, the temperature of maximal helicity is not uniform along the sequence and both solvated and nonsolvated helical alanine sites (13C=O stretches at 1592 cm(-1) and 1615 cm(-1), respectively) are apparent. Correlation between the two spectroscopies employed yielded the intriguing observation that the valine side chain is able to desolvate the i - 4 amide in short monomeric helices. In addition, we report further measurements of the temperature dependence of alanine statistical coil chemical shifts, the temperature dependence of the 13C chemical shift of urea (employed as chemical shift reference), and a useful formula for converting 13C' shifts into fractional helicities.  相似文献   
93.
The marine Microbacterium species HP2 (DSM 12583), isolated from the sponge Halichondria panicea, is able to produce a glucosylmannosyl-glycerolipid when grown on a complex medium with glucose. Optimizing the carbon sources in shake flask experiments has shown that glycerol affords the highest specific glycoglycerolipid production. The product yield approached 300 mg/L or 25 mg/g biomass upon scaling up in a 40-L bioreactor volume. The native diglycosyl-glycerolipid GGL.2 strongly inhibited growth of the tumor cell lines HM02 and Hep G2 (50% inhibition at 0.4 to 3 µg/mL), while the related deacylated compound (GG.2) showed a potent anti-tumor-promoting activity.  相似文献   
94.
A quantitative analysis of JPH scalar couplings in nucleic acids is difficult due to small couplings to phosphorus, the extreme overlap of the sugar protons and the fast relaxation of the spins involved in the magnetization transfer. Here we present a new methodology that relies on heteronuclear Constant Time Correlation Spectroscopy (CT-COSY). The three vicinal 3JPH3, 3JPH5 and 3JPH5 scalar couplings can be obtained by monitoring the intensity decay of the Pi-H3i – 1 peak as a function of the constant time T in a 2D correlation map. The advantage of the new method resides in the possibility of measuring the two 3JPH5 and 3JPH5 scalar couplings even in the presence of overlapped H5/H5 resonances, since the quantitative information is extracted from the intensity decay of the P-H3 peak. Moreover, the relaxation of the H3 proton is considerably slower than that of the H5/H5 geminal protons and the commonly populated conformations of the phosphate backbone are associated with large 3JPH3 couplings and relatively small 3JPH5 / H5. These two facts lead to optimal signal-to-noise ratio for the P-H3 correlation compared to the P-H5/H5 correlation.The heteronuclear CT-COSY experiment is suitable for oligonucleotides in the 10–15 kDa molecular mass range and has been applied to the 30mer HIV-2 TAR RNA. The methodology presented here can be used to measure P-H dipolar couplings (DPH) as well. We will present qualitative results for the measurement of P-Hbase and P-H2 dipolar couplings in the HIV-2 TAR RNA and will discuss the reasons that so far precluded the quantification of the DPHs for the 30mer RNA.  相似文献   
95.
96.
Variations of the shape and polarity of the DNA grooves caused by changes of the DNA conformation play an important role in the DNA readout. Despite the fact that non-canonical trans and gauche- conformations of the DNA backbone angle γ (O5′–C5′–C4′–C3′) are frequently found in the DNA crystal structures, their possible role in the DNA recognition has not been studied systematically. In order to fill in this gap, we analyze the available high-resolution crystal structures of the naked and complexed DNA. The analysis shows that the non-canonical γ angle conformations are present both in the naked and bound DNA, more often in the bound vs. naked DNA, and in the nucleotides with the A-like vs. the B-like sugar pucker. The alternative angle γ torsions are more frequently observed in the purines with the A-like sugar pucker and in the pyrimidines with the B-like sugar conformation. The minor groove of the nucleotides with non-canonical γ angle conformation is more polar, while the major groove is more hydrophobic than in the nucleotides with the classical γ torsions due to variations in exposure of the polar and hydrophobic groups of the DNA backbone. The propensity of the nucleotides with different γ angle conformations to participate in the protein–nucleic acid contacts in the minor and major grooves is connected with their sugar pucker and sequence-specific. Our findings imply that the angle γ transitions contribute to the process of the protein–DNA recognition due to modification of the polar/hydrophobic profile of the DNA grooves.  相似文献   
97.
A complete series of the 2 ′–5 ′ and 3 ′–5 ′ regioisomeric types of r(ApA) and 2 ′-d(ApA) analogues with the α-hydroxy-phosphonate C3 ′-O-P-CH(OH)-C4 ″ internucleotide linkage, isopolar but non-isosteric with the phosphodiester one, were synthesized and their hybridization properties with polyU studied. Due to the chirality on the 5 ′-carbon atom of the modified internucleotide linkage bearing phosphorus and hydroxy moieties, each regioisomeric type of ApA dimer is split into epimeric pairs. To examine the role of the 5 ′-hydroxyl of the α-hydroxy-phosphonate moiety during hybridization, the appropriate r(ApA) analogues with 3 ′(2 ′)-O-P-CH2-C4 ″ linkage lacking the 5 ′-hydroxyl were synthesized. Nuclear magnetic resonance (NMR) spectroscopy study on the conformation of the modified sugar-phosphate backbone, along with the hybridization measurements, revealed remarkable differences in the stability of complexes with polyU, depending on the 5 ′-carbon atom configuration. Potential usefulness of the α-hydroxy-phosphonate linkage in modified oligoribonucleotides is discussed.  相似文献   
98.
Bacterial Type II secretion systems (T2SS) and type IV pili (T4P) biogenesis machineries share the ability to assemble thin filaments from pilin protein subunits in the plasma membrane. Here we describe in detail the calculation strategy that served to determine a detailed atomic model of the T2SS pilus from Klebsiella oxytoca (Campos et al., PNAS 2010). The strategy is based on molecular modeling with generalized distance restraints and experimental validation (salt bridge charge inversion; double cysteine substitution and crosslinking). It does not require directly fitting structures into an envelope obtained from electron microscopy, but relies on lower resolution information, in particular the symmetry parameters of the helix forming the pilus. We validate the strategy with T4P where either a higher resolution structure is available (for the gonococcal (GC) pilus from Neisseria gonorrhoeae), or where we can compare our results to additional experimental data (for Vibrio cholerae TCP). The models are of sufficient precision to compare the architecture of the different pili in detail.  相似文献   
99.
Sumana Giddu  Fei Xu  Vikas Nanda 《Proteins》2013,81(3):386-393
Stability of the collagen triple helix is largely governed by its imino acid content, namely the occurrence of proline and 4R‐hydroxyproline at the X and Y positions, respectively, of the periodic (Gly‐X‐Y)n sequence. Although other amino acids at these positions reduce stability of the triple helix, this can be partially compensated by introducing intermolecular side‐chain salt bridges. This approach was previously used to design an abc‐type heterotrimer composed of one basic, one acidic, and one neutral imino acid rich chain (Gauba and Hartgerink, J Am Chem Soc 2007;129:15034–15041). In this study, an abc‐type heterotrimer was designed to be the most stable species using a sequence recombination strategy that preserved both the amino acid composition and the network of interchain salt bridges of the original design. The target heterotrimer had the highest Tm of 50°C, 7°C greater than the next most stable species. Stability of the heterotrimer decreased with increasing ionic strength, consistent with the role of intermolecular salt bridges in promoting stability. Quantitative meta‐analysis of these results and published stability measurements on closely related peptides was used to discriminate the contributions of backbone propensity and side‐chain electrostatics to collagen stability. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
100.
We present an alternative to the classical Ramachandran plot (R-plot) to display local protein backbone structure. Instead of the (ϕ, ψ)-backbone angles relating to the chemical architecture of polypeptides generic helical parameters are used. These are the rotation or twist angle ϑ and the helical rise parameter d. Plots with these parameters provide a different view on the nature of local protein backbone structures. It allows to display the local structures in polar (d, ϑ)-coordinates, which is not possible for an R-plot, where structural regimes connected by periodicity appear disconnected. But there are other advantages, like a clear discrimination of the handedness of a local structure, a larger spread of the different local structure domains—the latter can yield a better separation of different local secondary structure motives—and many more. Compared to the R-plot we are not aware of any major disadvantage to classify local polypeptide structures with the (d, ϑ)-plot, except that it requires some elementary computations. To facilitate usage of the new (d, ϑ)-plot for protein structures we provide a web application (http://agknapp.chemie.fu-berlin.de/secsass), which shows the (d, ϑ)-plot side-by-side with the R-plot.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号