首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1197篇
  免费   99篇
  国内免费   125篇
  2024年   3篇
  2023年   8篇
  2022年   15篇
  2021年   25篇
  2020年   25篇
  2019年   16篇
  2018年   26篇
  2017年   27篇
  2016年   17篇
  2015年   26篇
  2014年   24篇
  2013年   34篇
  2012年   27篇
  2011年   39篇
  2010年   25篇
  2009年   31篇
  2008年   45篇
  2007年   48篇
  2006年   56篇
  2005年   54篇
  2004年   45篇
  2003年   41篇
  2002年   37篇
  2001年   37篇
  2000年   41篇
  1999年   55篇
  1998年   49篇
  1997年   54篇
  1996年   53篇
  1995年   72篇
  1994年   51篇
  1993年   51篇
  1992年   34篇
  1991年   46篇
  1990年   35篇
  1989年   39篇
  1988年   40篇
  1987年   23篇
  1986年   13篇
  1985年   12篇
  1984年   4篇
  1983年   6篇
  1982年   2篇
  1981年   3篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1958年   1篇
排序方式: 共有1421条查询结果,搜索用时 15 毫秒
41.
42.
During one growing period, 5-year-old spruce trees (Picea abies L., Karst.) were exposed in environmental chambers to elevated concentrations of carbon dioxide (750 cm3 m?3) and ozone (008 cm3 m?3) as single variables or in combination. Control concentrations of the gases were 350cm3 m?3CO2 and 0.02 cm3 m ?3 ozone. To investigate whether an elevated CO2 concentration can prevent adverse ozone effects by reducing oxidative stress, the activities of the protective enzymes superoxide dismutase, catalase and peroxidase were determined. Furthermore, shoot biomass, pigment and protein contents of two needle age classes were investigated. Ozone caused pigment reduction and visible injury in the previous year's needles and growth reduction in the current year's shoots. In the presence of elevated concentrations of ozone and CO2, growth reduction in the current year's shoots was prevented, but emergence of visible damage in the previous year's needles was only delayed and pigment reduction was still found. Elevated concentrations of ozone or CO2 as single variables caused a significant reduction in the activities of superoxide dismutase and catalase in the current year's needles. Minimum activities of superoxide dismutase and catalase and decreased peroxidase activities were found in both needle age classes from spruce trees grown at enhanced concentrations of both CO2 and ozone. These results suggest a reduced tolerance to oxidative stress in spruce trees under conditions of elevated concentrations of both CO2 and ozone.  相似文献   
43.
Five genomic clones containing ribosomal DNA repeats from the gymnosperm white spruce (Picea glauca) have been isolated and characterized by restriction enzyme analysis. No nucleotide variation or length variation was detected within the region encoding the ribosomal RNAs. Four clones which contained the intergenic spacer (IGS) region from different rDNA repeats were further characterized to reveal the sub-repeat structure within the IGS. The sub-repeats were unusually long, ranging from 540 to 990 bp but in all other respects the structure of the IGS was very similar to the organization of the IGS from wheat, Drosophila and Xenopus.  相似文献   
44.
Radial tree growth is sensitive to environmental conditions, making observed growth increments an important indicator of climate change effects on forest growth. However, unprecedented climate variability could lead to non-stationarity, that is, a decoupling of tree growth responses from climate over time, potentially inducing biases in climate reconstructions and forest growth projections. Little is known about whether and to what extent environmental conditions, species, and model type and resolution affect the occurrence and magnitude of non-stationarity. To systematically assess potential drivers of non-stationarity, we compiled tree-ring width chronologies of two conifer species, Picea abies and Pinus sylvestris, distributed across cold, dry, and mixed climates. We analyzed 147 sites across the Europe including the distribution margins of these species as well as moderate sites. We calibrated four numerical models (linear vs. non-linear, daily vs. monthly resolution) to simulate growth chronologies based on temperature and soil moisture data. Climate–growth models were tested in independent verification periods to quantify their non-stationarity, which was assessed based on bootstrapped transfer function stability tests. The degree of non-stationarity varied between species, site climatic conditions, and models. Chronologies of P. sylvestris showed stronger non-stationarity compared with Picea abies stands with a high degree of stationarity. Sites with mixed climatic signals were most affected by non-stationarity compared with sites sampled at cold and dry species distribution margins. Moreover, linear models with daily resolution exhibited greater non-stationarity compared with monthly-resolved non-linear models. We conclude that non-stationarity in climate–growth responses is a multifactorial phenomenon driven by the interaction of site climatic conditions, tree species, and methodological features of the modeling approach. Given the existence of multiple drivers and the frequent occurrence of non-stationarity, we recommend that temporal non-stationarity rather than stationarity should be considered as the baseline model of climate–growth response for temperate forests.  相似文献   
45.
Summary The cellular structures of acid rain-irrigated needles of several provenances of Norway spruce (Picea abies L. Karst) seedlings were studied after winter experimental freezing. Frost injuries and recovery were characterized by visual damage scoring and classification of mesophyll cell alterations, also using histochemical methods for carbohydrate fluorescent staining. The treatment with-30° C during the late dormancy period was sufficient to cause significant injuries and intracellular degradation in the tissues of the green needles. The most affected seedlings in terms of visual injury scoring were found among those treated with clean water or at pH 3, while freezing injury, defined as an occlusion of phenolic substances in the central vacuole of the mesophyll cells, was most abundant in the needles from spruces irrigated either with clean water or at pH 4 or pH 3. Electron microscopy revealed the details of the injury, e. g. thinning out of the cytoplasm and chloroplast stroma, darkening of the chloroplasts and eventually swelling of the chloroplasts and protoplast. PAS and ConA reactions in the needle tissue revealed intense starch accumulation in the mesophyll and transfusion tissues as early as in March, with a tendency to increase, especially in the untreated needles during the recovery period. Plasma membrane disturbances were indicated by histochemical identification of callose deposits in the mesophyll cell walls, these being most abundant in the acid rain-treated needles. All these findings suggest that freezing at –30° C was more deleterious to the seedlings pretreated with acid or clean water than to those not given additional irrigation.  相似文献   
46.
沙地云杉苗期生长与干物质生产关系的研究   总被引:21,自引:4,他引:17  
本文用不同_的模型定量地研究了沙地云杉苗期的生长规律、季节动态及不同生长时期干物质在各器官之间的分配规律。1)1年生幼苗一直保持较高的生长速度,根生长尤为迅速。5年生幼苗在接近生长上限时,增长越来越慢。2)根、茎、叶干物质的生产符合理查德模型;根、茎、叶干重与全株干重之百分比表现出不同的变化趋势,反映了于物质在各器官中的分配规律。3)不同年度各器官的干重变化反映了由于自疏造成的叶的脱落和部分枝的脱落情况。4)各模型的相关系数几乎都达到了极显著的水平。  相似文献   
47.
Storage proteins of interior spruce ( Picea glauca engelmanii complex) somatic embryos were compared to those of zygotic embryos by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting. Somatic embryos contain the same storage proteins as zygotic embryos based on similarities of molecular weight, isoelectric variants, solubility characteristics and disulfide linkages. Storage protein levels varied among different somatic embryo genotypes; however, all genotypes tested accumulated significant amounts of storage proteins. Zygotic and somatic embryos display a similar developmental accumulation of storage proteins. The 22, 24, 33 and 35 kDa proteins appear in early stage embryos, while the 41 kDa protein begins to accumulate during mid cotyledon development. The 22, 24 and 41 kDa proteins accumulate continuously during cotyledon development in somatic embryos cultured on abscisic acid. In contrast, zygotic embryos display a more rapid and transient accumulation of these proteins.  相似文献   
48.
Abstract 1 The intensity of feeding by adult pine weevils Hylobius abietis (L.) on the stem bark of Norway spruce Picea abies (L.) Karst. seedlings planted in rows with a north–south orientation across a clear‐cutting, was measured throughout a growth season. The feeding was then correlated to light interception, soil temperature and distance to the nearest forest edge. 2 Feeding was at least twice as intense on seedlings in the central part of the clear‐cutting compared to those at the edges. The decline began approximatety 15 m from the edge and was of similar proportions on both the sun‐exposed and shaded sides. 3 Measures of global radiation and soil temperature correlated well with consumption on the shaded side. However, on the sun‐exposed side, there were no apparent correlations with global radiation or soil temperature that could explain the decline in consumed bark area. 4 We conclude that the decline in feeding towards the forest edges was mainly due to factors other than the microclimate variables we monitored. We suggest that the presence of roots of living trees along the forest edge may reduce damage to seedlings, since they provide an alternative source of food for the weevils. This alternative‐food hypothesis may also explain why seedlings in shelterwoods usually suffer less damage from pine weevils than seedlings in clear‐cuttings.  相似文献   
49.
Field data on the sulphur and cation budget of growing Norway spruce canopies (Picea abies [L.] Karst.) are summarized. They are used to test a spruce decline model capable of quantifying effects of chronic SO2 pollution on spruce forests. At ambient SO2 concentrations, acute SO2 damage is rare, but exposure to polluted air produces reversible thinning of the canopy structure with a half-time of a few years. Canopy thinning in the spruce decline model is highest (i) at elevated SO2 pollution, (ii) in the mountains, (iii) at unfertilized sites with poor K+, Mg2+ or Zn2+ supply, (iv) at low spruce litter decomposition rates, and (v) acidic, shallow soils at high annual precipitation rates in the field and vice versa. Model application using field data from Würzburg (moderate SO2 pollution, alkaline soils, no spruce decline) and from the Erzgebirge (extreme SO2 pollution, acidic soils in the mountains, massive spruce decline) predicts canopy thinning by 2–11% in Würzburg and by 45–70% in the Erzgebirge. The model also predicts different SO2-tolerance limits for Norway spruce depending on the site elevation and on the nutritional status of the needles. If needle loss of more than 25% (damage class 2) is taken to indicate ‘real damage’ exceeding natural variances, then for optimum soil conditions SO2 tolerance limits range from (27.3 ± 7.4) μg m?3 to (62.6 ± 16.5) μg m?3. For shallow and acidic soils, SO2 tolerance limits range from (22.0 ± 5.5) μg m?3 to (37.4 ± 7.5) μ m?3. These tolerance limits, which are calculated on an ecophysiological data basis for Norway spruce are close to epidemiological SO2-toIerance limits as recommended by the IUFRO, UN-ECE and WHO. The observed statistical regression slope of the plot (damaged spruce trees vs. SO2-pollution) in west Germany is confirmed by modelling (6% error). Model application to other forest trees allows deduction of the observed sequence of SO2-sensitivity: Abies > Picea > Pinus > Fagus > Quercus. Thus, acute phytotoxicity of SO2 seems not to be involved in ‘forest decline’. Chronic SO2-pollution induces massive canopy thinning of Abies alba and Picea abies only at unfavourable sites, where natural stress factors and secondary effects of SO2pollution act together to produce tree decline.  相似文献   
50.
Symbiosis between fungi and plant roots forming a mycorrhiza involves extensive interactions at the molecular level between both partners. The role of plant hormones in the regulation of mycorrhizal infection is not known to involve jasmonates. Their endogenous levels increase during pathogen attack; however, little has been done on their involvement in mycorrhizae. In our recent work, root growth patterns of 2-month-old spruce seedlings after inoculation withPisolithus tinctorius and/or jasmonic acid (JA) treatment were studied using a paper-sandwich technique. Changes in root length, the degree of branching, presence and length of root hairs, and infection parameters were followed using a stereomicroscope. The first mycorrhizal contact of hyphae with roots was significantly accelerated upon treatment with 0.5 M JA. Interactions between root hairs and fungal hyphae were seen by scanning electron microscopy. The multiplication of root hairs of non-mycorrhized seedlings treated with 5.0 M JA and changes of the root surface were observed by the same technique.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号