首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   6篇
  197篇
  2023年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   13篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
  2009年   9篇
  2008年   7篇
  2007年   10篇
  2006年   19篇
  2005年   6篇
  2004年   12篇
  2003年   6篇
  2002年   9篇
  2001年   11篇
  2000年   5篇
  1999年   12篇
  1998年   9篇
  1997年   3篇
  1996年   4篇
  1995年   11篇
  1994年   4篇
  1992年   3篇
  1991年   5篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1978年   1篇
排序方式: 共有197条查询结果,搜索用时 15 毫秒
101.
Arthropods use odours associated with the presence of their food, enemies and competitors when searching for patches. Responses to these odours therefore determine the spatial distribution of animals, and are decisive for the occurrence and strength of interactions among species. Therefore, a logical first step in studying food web interactions is the analysis of behaviour of individuals that are searching for patches of food. We followed this approach when studying interactions in an artificial food web occurring on greenhouse cucumber in the Netherlands. In an earlier paper we found that one of the predators of the food web, the predatory mite Phytoseiulus persimilis Athias-Henriot, used to control spider mites, discriminates between odours from plants with spider mites, Tetranychus urticae Koch, and plants with spider mites plus conspecific predators. The odours used for discrimination are produced by adult prey in response to the presence of predators, and probably serve as an alarm pheromone to warn related spider mites. Other predator species may also trigger production of this alarm pheromone, which P. persimilis could use in turn to avoid plants with heterospecific predators. We therefore studied the response of the latter to odours from plants with spider mites and 3 other predator species, i.e. the generalist predatory bug Orius laevigatus (Fieber), the polyphagous thrips Frankliniella occidentalis and the spider-mite predator Neoseiulus californicus (McGregor). Both olfactometer and greenhouse release experiments yielded no evidence that P. persimilis avoids plants with any of the 3 heterospecific predators. This suggests that these predators do not elicit production of alarm pheromones in spider mites, and we argue that this is caused by a lack of coevolutionary history. The consequences of the lack of avoidance of heterospecific predators for interactions in food webs and biological control are discussed.  相似文献   
102.
Abstract

Two factors were examined to determine their effect on the life history, reproduction and life table parameters in the predacious mite Phytoseiulus macropilis (Banks) in the laboratory. The factors studied included multiple mating and various prey stages of Tetranychus urticae Koch. When females fed on mixed actives (protonymphs and deutonymphs) of T. urticae, the fecundity of females mated more than once was 1.7 times higher than in females mated only once, also oviposition period and adult longevity was longer. The adult longevity and life span of P. macropilis were similar when fed on mixed actives, eggs (0 – 24-h-old) and (0 – 48-h-old) of T. urticae, while both periods were increased and reproduction was higher when fed on older eggs (72 – 96-h-old) of T. urticae. The total number of eggs deposited by females was significantly higher on eggs of (various ages) than on mixed actives of T. urticae. Life table parameters showed that a diet of (72 – 96-h-old) eggs of T. urticae provided the longest generation time (11.066 days) and female longevity (33.54 days) as well as the highest intrinsic rate of natural increase (rm = 0.36755) and greatest total fecundity which resulted in the highest net reproductive rate (Ro = 58.4136) value. The adult female consumed daily an average of 6.8 mixed actives of T. urticae during its life cycle, while it was increased to 13.6 during the oviposition period. The daily (72 – 96-h-old) eggs of T. urticae consumed by female P. macropilis during its life cycle and adult longevity was significantly higher than that recorded on either (0 – 24-h-old) or (0 – 48-h-old) eggs of T. urticae.  相似文献   
103.
The effect of wind and woody margins on the dispersal and population dynamics of phytoseiid mites was studied in a vine plot for a period of two years. Mites were sampled in the plot and in the surrounding vegetation (crops and natural vegetation) in order to determine phytoseiid mite abundance. The surrounding vegetation was considered to be a reservoir of phytoseiids from where the vine plot could be invaded. Directional and non-directional soil and aerial traps were placed in the plot to determine predatory mite exchange between the two areas. Colonization of the plot occurred in two stages: first, mite migration into the plot, followed by their establishment. The two-year study partially clarified the first of these two stages. Kampimodromus aberrans was the main species caught in the aerial traps. Phytoseiid mite dispersal within the vine plot seemed to be affected by both wind (direction, intensity and regularity) and phytoseiid mite density in the woody margin. However, the woody margin had a large effect only over a short distance. Some observations pointed towards an effect of other reservoir areas but it was not possible to characterize these. The population density of the phytoseiid mites in the plot increased from 1996 to 1998, but these increases are much smaller than one would expect on the basis of the number of mites migrating by air in the plot. Moreover, blocks where most mites were trapped were not the blocks where densities of phytoseiid mites on vine leaves were the largest. It therefore seems likely that not all migrants were able to develop. Their settlement pattern was not determined and this could constitute a potential research focus for the future.  相似文献   
104.
Photoperiod and temperature conditions known to induce diapause in tropical arthropods were tested on two generations (G0 and G1) of the phytoseiid, Euseius fustis. Failure to lay eggs or a pre-oviposition period longer than 15 days were the criteria used to determine whether females were in diapause. Females reared from egg to adult and held throughout adult life under cyclic temperatures of 29/20°C in combination with long photophases of 16L: 8D and 14L: 10D showed no indication of aestival diapause. Similarly, hibernal diapause was not induced in females reared under a constant temperature of 18°C and a photophase of 8L: 16D. Under the various test conditions, females initiated oviposition within an average of 4 days. Overall, pre-oviposition patterns for G0 and G1 females were similar under the same test conditions. Reproductive patterns based on the mean number of eggs per female per day varied only slightly between generations for the same treatments. No behavioural or morphological attributes associated with diapause were observed.  相似文献   
105.
Studies have proposed that predators of herbivores suffer significant fitness losses from the defense chemicals of host plants, and that herbivores adapted to these chemicals may experience reduced predation risk when residing on such plant species. We examined the effects of oleander, Nerium indicum Mill. (Apocynaceae), a host plant of the spider mite, Tetranychus kanzawai Kishida (Acari: Tetranychidae), on their prime predator, Neoseiulus womersleyi (Schicha) (Acari: Phytoseiidae), and tested the hypothesis that this host plant provides enemy‐free space. At the study sites, T. kanzawai occurred on oleander shrubs; in contrast, although N. womersleyi was present in the area, no individuals were found on oleander. Tetranychus kanzawai feeding on oleander negatively affected the settlement, development, and egg production of N. womersleyi. The lower egg production was a result of both the direct effects of oleander and the indirect effects via T. kanzawai. Previous studies showed that the fitness of T. kanzawai in the presence of N. womersleyi was lower than that in the absence of the predator, and lower on oleander than on other palatable host plant species in the absence of predators. Our findings suggest that N. womersleyi may not be able to invade T. kanzawai patches on oleander shrubs, which results in the fitness of T. kanzawai being higher on oleander than on other host plant species in the same area when N. womersleyi is present. This supports the hypothesis that T. kanzawai acquires enemy‐free space on oleander using the direct and indirect adverse effects of oleander on their predators as major defense mechanisms.  相似文献   
106.
We studied the capacity of one species of predator to control two major pests of greenhouse crops, Western flower thrips (Frankliniella occidentalis (Pergande)) and the greenhouse whitefly (Trialeurodes vaporariorum (Westwood)). In such a one-predator–two-prey system, indirect interactions can occur between the two pest species, such as apparent competition and apparent mutualism. Whereas apparent competition is desired because it brings pest levels down, apparent mutualism is not, because it does the opposite. Because apparent competition and apparent mutualism occurs at different time scales, it is important to investigate the effects of a shared natural enemy on biological control on a time scale relevant for crop growth. We evaluated the control efficacy of the predatory mites Amblyseius swirskii (Athias-Henriot) and Euseius ovalis (Evans) in cucumber crops in greenhouse compartments with only thrips, only whiteflies or both herbivorous insects together. Each of the two predators controlled thrips, but A. swirskii reduced thrips densities the most. There was no effect of the presence of whiteflies on thrips densities. Whitefly control by each of the two predators in absence of thrips was not sufficient, yet better with E. ovalis. However, whitefly densities in presence of thrips were reduced dramatically, especially by A. swirskii. The densities of predators were up to 15 times higher in presence of both pests than in the single-pest treatments. Laboratory experiments with A. swirskii suggest that this is due to a higher juvenile survival and developmental rate on a mixed diet. Hence, better control may be achieved not only because of apparent competition, but also through a positive effect of mixed diets on predator population growth. This latter phenomenon deserves more attention in experimental and theoretical work on biological control and apparent competition.  相似文献   
107.
The attraction of the predatory mites, Typhlodromalus manihoti and Typhlodromalus aripo, to the host plant-spider mite complex, Manihot esculentaMononychellus tanajoa, was investigated with a Y-tube olfactometer. Factors examined included predator starvation period, several combinations of cassava leaf biomass and initial M. tanajoa infestations, M. tanajoa-damaged leaves with mites and/or their residues removed, M. tanajoa alone, and mechanically damaged cassava leaves. We found that females of T. manihoti and T. aripo were significantly attracted to M. tanajoa-infested cassava leaves when the predators were starved for 2, 6, or 10 h. Satiated T. aripo was significantly attracted to infested cassava leaves whereas satiated T. manihoti did not discriminate between infested and non-infested leaves. When a choice was given between either two or four leaves infested with 200 female M. tanajoa and an equivalent number of non-infested leaves, 2 h-starved T. manihoti and T. aripo were significantly attracted to each of the infested groups of cassava leaves. At a density of 12 female M. tanajoa per leaf on four leaves, 2 h-starved T. manihoti was still attracted to M. tanajoa-infested leaves whereas 2 h-starved T. aripo was not attracted. When a choice was given between non-infested cassava leaves and either infested leaves from which only M. tanajoa females had been removed, or infested leaves from which all M. tanajoa and their visible products (web, feces) had been wiped off, T. aripo preferred odors from both types of previously infested leaves. Typhlodromalus manihoti was only attracted to infested leaves from which the M. tanajoa females only had been removed. Finally, the two predators were not attracted to 400 female M. tanajoa on clean cotton wool or to mechanically wounded leaves. This supports the hypothesis that M. tanajoa damage induces volatile cues in cassava leaves that attract T. manihoti and T. aripo to M. tanajoa-infested leaves.  相似文献   
108.
The effect of single versus multiple mating on longevity and fecundity as well as the number of matings required to maximize a female’s reproductive success of the predatory mite Kampimodromus aberrans Oudemans were studied under laboratory conditions. Newly emerged adult females of the stock colony of K. aberrans were placed individually on a bean leaf disc, and maintained at 25°C and 16:8 LD. A young male remained with a female for limited periods or continuously. Mating was a requisite for oocyte maturation and oviposition. Females which mated three to four times during their life and females in continuous presence of males, laid significantly and considerably more eggs than single-mated females. Virgin females lived the longest, and those in continuous presence of males the shortest. In all cases and irrespective of the number of matings, the sex ratio of the offspring was male-biased in the first three to four days of oviposition period, and female-biased in later days.  相似文献   
109.
Abstract

Studies on the life history and life table parameters of Neoseiulus cucumeris Oudemans (Acari: Phytoseiidae) were carried out under laboratory conditions of 25?±?1?°C and 65?±?5% RH; 30?±?1?°C and 60?±?5% RH; 35?±?1?°C and 55?±?5% RH. As prey, immature stages of tetranychid spider mite T. urticae Koch (Acari: Tetranychidae) and the moving stages of the Tomato Russet Mite A. lycopersici (Massee) (Acari: Eriophyideae) were selected. The predatory phytoseiid mite, Neoseiulus cucumeris (Oudemans) was able to develop successfully from egg to adult stage through the entire life history on both preys. The higher of different temperatures and relative humidities shortened the development and increased reproduction and prey consumption and vice versa. The maximum reproduction (3.91, and 3.09 eggs/♀/day) was recorded at 35?°C and 65% RH, while the minimum (2.12, and 1.90 eggs/♀/day) was at 25?±?1?°C and 55?±?5% RH. when N. cucumeris fed on A. lycopersici and T. urticae, respectively. The reproductive rate on eriophyid was significantly higher than previously recorded on tetranychid. Life table parameters indicated that feeding of phytoseiid mite N. cucumeris on tomato russet mite A. lycopersici led to the highest reproduction rate (rm?=?0.268, 0.232 and 0.211 females/female/day), while feeding on T.urticae gave the lowest reproduction rate (rm?=?0.159, 0.143 and 0.131) at 35?°C and 55% RH, 30?°C and 60% RH and 25?°C and 65% RH, respectively. The population of N. cucumeris multiplied (36.81, 28.71 and 20.47) and (24.60, 19.58 and 14.62 times) in a generation time of (20.10, 23.20 and 25.14) and (22.35, 25.36 and 27.79 days) when a predator fed on A. lycopersici and T. urticae at the same temperature above mentioned, respectively. These results suggest that the two mites, particularly A. lycopersici, proved to be suitable prey for N.cucumeris, as a facultative predator.  相似文献   
110.
The recent unexpected local establishment of a non‐native predatory mite, Neoseiulus californicus (McGregor) (Acari: Phytoseiidae), in the UK prompted us to undertake this study, which investigated the thermal biology of an alien species Typhlodromips montdorensis (Schicha) (Acari: Phytoseiidae). Laboratory and field experiments on its cold tolerance were used to assess its establishment potential outside of glasshouse environments in the UK. Currently, T. montdorensis is being tested as a glasshouse biological control agent against thrips and spider mites, but is not yet licensed for release in the UK. Typhlodromips montdorensis has a developmental threshold of between 10.3 and 10.7 °C, and a thermal budget of between 108.7 and 105.3 degree‐days when estimated by weighted and simple linear regression, respectively. Under outdoor conditions, T. montdorensis could theoretically complete up to six generations a year. The supercooling points of female and larval T. montdorensis were ?22 to ?24 °C with 100% pre‐freeze mortality apparent in both acute and chronic low temperature exposures. Typhlodromips montdorensis were unable to enter diapause under a selected laboratory regime. No reproduction occurred in the field from November to March, with 100% mortality within 7–14 days of release during this period. It is concluded that T. montdorensis would be a ‘safe candidate’ for introduction as a glasshouse biological control agent in the UK.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号