首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1335篇
  免费   74篇
  国内免费   64篇
  2023年   17篇
  2022年   44篇
  2021年   35篇
  2020年   34篇
  2019年   45篇
  2018年   39篇
  2017年   33篇
  2016年   42篇
  2015年   37篇
  2014年   72篇
  2013年   82篇
  2012年   70篇
  2011年   71篇
  2010年   57篇
  2009年   63篇
  2008年   63篇
  2007年   88篇
  2006年   41篇
  2005年   50篇
  2004年   38篇
  2003年   35篇
  2002年   29篇
  2001年   25篇
  2000年   23篇
  1999年   27篇
  1998年   22篇
  1997年   16篇
  1996年   13篇
  1995年   7篇
  1994年   18篇
  1993年   14篇
  1992年   14篇
  1991年   16篇
  1990年   21篇
  1989年   12篇
  1988年   15篇
  1987年   13篇
  1986年   11篇
  1985年   13篇
  1984年   14篇
  1983年   11篇
  1982年   15篇
  1981年   9篇
  1980年   15篇
  1979年   9篇
  1978年   9篇
  1977年   10篇
  1975年   3篇
  1973年   3篇
  1972年   3篇
排序方式: 共有1473条查询结果,搜索用时 78 毫秒
111.
112.
What are the key building blocks that would have been needed to construct complex protein folds? This is an important issue for understanding protein folding mechanism and guiding de novo protein design. Twenty naturally occurring amino acids and eight secondary structures consist of a 28‐letter alphabet to determine folding kinetics and mechanism. Here we predict folding kinetic rates of proteins from many reduced alphabets. We find that a reduced alphabet of 10 letters achieves good correlation with folding rates, close to the one achieved by full 28‐letter alphabet. Many other reduced alphabets are not significantly correlated to folding rates. The finding suggests that not all amino acids and secondary structures are equally important for protein folding. The foldable sequence of a protein could be designed using at least 10 folding units, which can either promote or inhibit protein folding. Reducing alphabet cardinality without losing key folding kinetic information opens the door to potentially faster machine learning and data mining applications in protein structure prediction, sequence alignment and protein design. Proteins 2015; 83:631–639. © 2015 Wiley Periodicals, Inc.  相似文献   
113.
Most studies examining the metabolic fate of NO during systemic inflammation have focused on measuring the quantitatively predominating, stable anions nitrite and nitrate within the circulation. However, these are not necessarily the NO-related products that govern NO metabolism and signaling in tissues. We assessed all major NO derivatives temporally in blood and vital organs during inflammation and explored their relationship to insult severity and redox status. Male rats receiving intraperitoneal endotoxin or vehicle were sacrificed for organ and blood sampling between 0 and 24 h. Endotoxin induced transient and organ-specific changes in a variety of NO metabolites. Nitrite and nitrate increased, peaking at 8 and 12 h, respectively. S- and N-nitrosation and heme-nitrosylation products also peaked at 8 h; these posttranslational protein modifications were associated with decreased myocardial function (echocardiography). Evidence of oxidative stress and systemic inflammation was also obtained. The rise in most NO derivatives was proportional to insult severity. All metabolite levels normalized within 24 h, despite evidence of persisting myocardial dysfunction and clinical unwellness. Our findings point to a complex interplay between NO production, antioxidant defense, and redox status. Although the precise (patho)physiologic roles of specific NO derivatives and their diagnostic/prognostic utility await further investigation, nitroso species in erythrocytes are the most sensitive markers of NO in systemic inflammation, detectable before clinical symptoms manifest.  相似文献   
114.
The objective of this work is to investigate the effects of cellulase loading and β-glucosidase supplementation on enzymatic hydrolysis of pretreated Dacotah switchgrass. To assess the difference among various pretreatment methods, the profiles of sugars and intermediates were determined for differently treated substrates. For all pretreatments, 72 h glucan/xylan digestibilities increased sharply with enzyme loading up to 25 mg protein/g-glucan, after which the response varied depending on the pretreatment method. For a fixed level of enzyme loading, dilute sulfuric acid (DA), SO2, and Lime pretreatments exhibited higher digestibility than the soaking in aqueous ammonia (SAA) and ammonia fiber expansion (AFEX). Supplementation of Novozyme-188 to Spezyme-CP improved the 72 h glucan digestibility only for the SAA treated samples. The effect of β-glucosidase supplementation was discernible only at the early phase of hydrolysis where accumulation of cellobiose and oligomers is significant. Addition of β-glucosidase increased the xylan digestibility of alkaline treated samples due to the β-xylosidase activity present in Novozyme-188.  相似文献   
115.
In this study, a novel Hsp90 inhibitor BJ-B11, was synthesized and evaluated for in vitro antiviral activity against several viruses. Possible anti-HSV-1 mechanisms were also investigated. BJ-B11 displayed no antiviral activity against coxsackievirus B3 (CVB3), human respiratory syncytial virus (RSV) and influenza virus (H1N1), but exhibited potent anti-HSV-1 and HSV-2 activity with EC50 values of 0.42 ± 0.18 μM and 0.60 ± 0.21 μM, respectively. Additionally, the inhibitory effects of BJ-B11 against HSV-1 were likely to be introduced at early stage of infection. Our results indicate that BJ-B11 with alternative mechanisms of action is potent as an anti-HSV clinical trial candidate.  相似文献   
116.
The Pleistocene climatic oscillations promoted the diversification in avian species during the last glacial period. The red‐legged partridge (Alectoris rufa, Family Phasianidae) has a large natural distribution extending from the Mediterranean to humid temperate zones. However, the genetic structure for this species is unknown. The present study investigates the phylogeography, genetic structure and demographic history of Arufa across its distribution, employing both mitochondrial DNA control region sequences and nuclear microsatellite loci. Our results propose that this species was greatly affected by Pleistocene glaciations. The mismatch analyses suggest that the current populations resulted from post‐glacial expansion and subsequent differentiation resulting in five diagnosable genetic clusters: Southwestern, Central‐eastern, Northwestern, Balearic and French and Italian. Further, we found evidence of three glacial refugia within the currently recognized Iberian glacial refugium. The intraspecific structure revealed by both maternal and biparental phylogeographic analyses was not resolved in the phylogenetic analyses. Based on all considerations, we recommended that five management units be recognized.  相似文献   
117.
Regional elevations in cerebral blood flow (CBF) often occur in response to localized increases in cerebral neuronal activity. An ever expanding literature has linked this neurovascular coupling process to specific signaling pathways involving neuronal synapses, astrocytes and cerebral arteries and arterioles. Collectively, these structures are termed the "neurovascular unit" (NVU). Astrocytes are thought to be the cornerstone of the NVU. Thus, not only do astrocytes "detect" increased synaptic activity, they can transmit that information to proximal and remote astrocytic sites often through a Ca(2+)- and ATP-related signaling process. At the vascular end of the NVU, a Ca(2+)-dependent formation and release of vasodilators, or substances linked to vasodilation, can occur. The latter category includes ATP, which upon its appearance in the extracellular compartment, can be rapidly converted to the potent vasodilator, adenosine, via the action of ecto-nucleotidases. In the present review, we give consideration to experimental model-specific variations in purinergic influences on gliovascular signaling mechanisms, focusing on the cerebral cortex. In that discussion, we compare findings obtained using in vitro (rodent brain slice) models and multiple in vivo models (2-photon imaging; somatosensory stimulation-evoked cortical hyperemia; and sciatic nerve stimulation-evoked pial arteriolar dilation). Additional attention is given to the importance of upstream (remote) vasodilation; the key role played by extracellular ATP hydrolysis (via ecto-nucleotidases) in gliovascular coupling; and interactions among multiple signaling pathways.  相似文献   
118.
Chinese hamster ovary (CHO) cells are the main platform for production of biotherapeutics in the biopharmaceutical industry. However, relatively little is known about the metabolism of CHO cells in cell culture. In this work, metabolism of CHO cells was studied at the growth phase and early stationary phase using isotopic tracers and mass spectrometry. CHO cells were grown in fed-batch culture over a period of six days. On days 2 and 4, [1,2-13C] glucose was introduced and the labeling of intracellular metabolites was measured by gas chromatography-mass spectrometry (GC–MS) at 6, 12 and 24 h following the introduction of tracer. Intracellular metabolic fluxes were quantified from measured extracellular rates and 13C-labeling dynamics of intracellular metabolites using non-stationary 13C-metabolic flux analysis (13C-MFA). The flux results revealed significant rewiring of intracellular metabolic fluxes in the transition from growth to non-growth, including changes in energy metabolism, redox metabolism, oxidative pentose phosphate pathway and anaplerosis. At the exponential phase, CHO cell metabolism was characterized by a high flux of glycolysis from glucose to lactate, anaplerosis from pyruvate to oxaloacetate and from glutamate to α-ketoglutarate, and cataplerosis though malic enzyme. At the stationary phase, the flux map was characterized by a reduced flux of glycolysis, net lactate uptake, oxidative pentose phosphate pathway flux, and reduced rate of anaplerosis. The fluxes of pyruvate dehydrogenase and TCA cycle were similar at the exponential and stationary phase. The results presented here provide a solid foundation for future studies of CHO cell metabolism for applications such as cell line development and medium optimization for high-titer production of recombinant proteins.  相似文献   
119.
120.
Geist J  Kuehn R 《Molecular ecology》2005,14(2):425-439
Despite the fact that mollusc species play an important role in many aquatic ecosystems, little is known about their biodiversity and conservation genetics. Freshwater pearl mussel (Margaritifera margaritifera L.) populations are seriously declining all over Europe and a variety of conservation programs are being established to support the remaining endangered central European populations. In order to provide guidelines for conservation strategies and management programs, we investigated the genetic structure of 24 freshwater pearl mussel populations originating from five major central European drainages including Elbe, Danube, Rhine, Maas and Weser, representing the last and most important populations in this area. We present a nondestructive sampling method of haemolymph for DNA analyses, which is applicable for endangered bivalves. The analyses of nine microsatellite loci with different levels of polymorphism revealed a high degree of fragmented population structure and very different levels of genetic diversity within populations. These patterns can be explained by historical and demographic effects and have been enforced by anthropogenic activities. Even within drainages, distinct conservation units were detected, as revealed from high F(ST) values, private alleles and genetic distance measures. Populations sampled close to contact zones between main drainage systems showed lowest levels of correct assignment to present-day drainage systems. Populations with high priority for conservation should not only be selected by means of census population size and geographical distance to other populations. Instead, detailed genetic analyses are mandatory for revealing differentiation and diversity parameters, which should be combined with ecological criteria for sustainable conservation and recovery programs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号