首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6857篇
  免费   204篇
  国内免费   249篇
  2024年   10篇
  2023年   44篇
  2022年   83篇
  2021年   114篇
  2020年   94篇
  2019年   159篇
  2018年   205篇
  2017年   91篇
  2016年   109篇
  2015年   153篇
  2014年   373篇
  2013年   467篇
  2012年   259篇
  2011年   402篇
  2010年   231篇
  2009年   354篇
  2008年   387篇
  2007年   366篇
  2006年   372篇
  2005年   377篇
  2004年   326篇
  2003年   287篇
  2002年   241篇
  2001年   151篇
  2000年   161篇
  1999年   171篇
  1998年   156篇
  1997年   147篇
  1996年   124篇
  1995年   132篇
  1994年   97篇
  1993年   70篇
  1992年   76篇
  1991年   62篇
  1990年   56篇
  1989年   50篇
  1988年   57篇
  1987年   45篇
  1986年   35篇
  1985年   47篇
  1984年   41篇
  1983年   28篇
  1982年   17篇
  1981年   17篇
  1980年   18篇
  1979年   14篇
  1978年   7篇
  1977年   9篇
  1976年   11篇
  1974年   3篇
排序方式: 共有7310条查询结果,搜索用时 15 毫秒
941.
Mitochondria are found in all nucleated human cells and generate most of the cellular energy. Mitochondrial disorders result from dysfunctional mitochondria that are unable to generate sufficient ATP to meet the energy needs of various organs. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a frequent maternally inherited mitochondrial disorder. There is growing evidence that nitric oxide (NO) deficiency occurs in MELAS syndrome and results in impaired blood perfusion that contributes significantly to several complications including stroke-like episodes, myopathy, and lactic acidosis. Both arginine and citrulline act as NO precursors and their administration results in increased NO production and hence can potentially have therapeutic utility in MELAS syndrome. Citrulline raises NO production to a greater extent than arginine, therefore, citrulline may have a better therapeutic effect. Controlled studies assessing the effects of arginine or citrulline supplementation on different clinical aspects of MELAS syndrome are needed.  相似文献   
942.
Synthetic part sequences of human pituitary growth hormone (hGH 176–191 and hGH 177–191) corresponding to residues 176–191 or 177–191 of the hormone have been tested for their effects on glycogen and pyruvate metabolism in the rat, both in vivo and in vitro. When injected, the peptides caused transient increases in blood glucose and lactate, while decreasing the activity ratio of glycogen synthase in muscle, adipose tissue and liver and of pyruvate dehydrogenase in muscle and adipose tissue, but not in liver. These decreases were associated with the conversion of the enzymes from their active to their inactive forms, since the peptides did not affect the total amount of either the synthase or the dehydrogenase. The time course of the effect on the enzymes was similar to that for the effect on blood metabolites, and responses for synthase were produced over the range 0.07–7 nmols hGH 177–191/kg body weight. Phosphorylase activity was not affected by the peptides, nor was the capacity to dispose of injected L-lactate. Experiments with adipocytes and hepatocytes showed that the peptides also affected glycogen synthase and pyruvate dehydrogenase activities in vitro. The peptides had no effect on the overall rate of gluconeogenesis from lactate by hepatocytes. However, at times corresponding to those at which glycogen synthase was inactivated, the peptides caused increased incorporation of lactate into free glucose and decreased incorporation into glycogen. It was concluded that the peptides acted directly on their target tissues, and that the observed hyperlactataemia was the result of the inactivation of pyruvate dehydrogenase. The addition lactate increased the flux through the gluconeogenic pathway, and appeared as glucose because the peptide also inactivated glycogen synthase. Thus, the hyperglycaemia produced by hGH 177–199 and related peptides is explicable in terms of a modified Cori Cycle.  相似文献   
943.
944.
In contrast to the species with erythrocytes of high 2,3-bisphosphoglycerate content, in the sheep the concentration of 2,3-bisphosphoglycerate decreases during maturation of reticulocytes. The decrease can be explained by the drop of the phosphofructokinase/pyruvate kinase and 2,3-bisphosphoglycerate synthase/2,3-bisphosphoglycerate phosphatase activity ratios that result from the decline of phosphofructokinase, pyruvate kinase, phosphoglycerate mutase and the bifunctional enzyme 2,3-bisphosphoglycerate synthase/phosphatase. The concentrations of fructose 2,6-bisphosphate and aldohexose 1,6-bisphosphates also decrease during sheep reticulocyte maturation in parallel to the 6-phosphofructo 2-kinase and the glucose 1,6-bisphosphate synthase activities.  相似文献   
945.
We have shown the connection of hyaluronan synthesis activity with the enhanced shedding of extracellular vesicles, but detailed morphological analysis of those hyaluronan-induced EVs is still missing. In this study we utilized a comprehensive set of high-resolution imaging techniques to characterize in high detail the size and morphology of EVs originating from stable MCF7 breast cancer cell line and transiently transfected cells expressing GFP-HAS3. To avoid possible artefacts or loss of EVs resulting from the isolation process, special attention was paid to analysis of EVs in situ in monolayer and in 3D cultures. The results of this study show that GFP-HAS3 expressing MCF7 cells produce morphologically diverse EVs but also demonstrates the variation in results obtained with different experimental setup, which emphasizes the importance of comparison between different methods when interpreting the observations.  相似文献   
946.
The synthesis, pharmacological evaluation and modelisation of 7-methoxyindazole (7-MI) and related alkoxy-indazoles as novel inhibitors of neuronal nitric oxide synthase are presented. 7-MI remains the most active compound of this series in an in vitro enzymatic assay of neuronal nitric oxide synthase activity. Modeling studies of the interaction of 7-substituted indazole derivatives complexed with nNOS and the relationship with their respective biological activities suggest that a bulky substitution on position-7 is responsible for a steric hindrance effect which does not allow these compounds to interact with nNOS in the same way as 7-NI and 7-MI.  相似文献   
947.
TS (thymidylate synthase) is a key enzyme in the de novo biosynthesis of dTMP, and is indispensable for DNA replication. Previous studies have shown that intracellular degradation of the human enzyme [hTS (human thymidylate synthase)] is mediated by the 26S proteasome, and occurs in a ubiquitin-independent manner. Degradation of hTS is governed by a degron that is located at the polypeptide''s N-terminus that is capable of promoting the destabilization of heterologous proteins to which it is attached. The hTS degron is bipartite, consisting of two subdomains: an IDR (intrinsically disordered region) that is highly divergent among mammalian species, followed by a conserved amphipathic α-helix (designated hA). In the present report, we have characterized the structure and function of the hTS degron in more detail. We have conducted a bioinformatic analysis of interspecies sequence variation exhibited by the IDR, and find that its hypervariability is not due to diversifying (or positive) selection; rather, it has been subjected to purifying (or negative) selection, although the intensity of such selection is relaxed or weakened compared with that exerted on the rest of the molecule. In addition, we have verified that both subdomains of the hTS degron are required for full activity. Furthermore, their co-operation does not necessitate that they are juxtaposed, but is maintained when they are physically separated. Finally, we have identified a ‘cryptic’ degron at the C-terminus of hTS, which is activated by the N-terminal degron and appears to function only under certain circumstances; its role in TS metabolism is not known.  相似文献   
948.
Prenylation is a process widely prevalent in primary and secondary metabolism, contributing to functionality and chemical diversity in natural systems. Due to their high regio- and chemoselectivities, prenyltransferases are also valuable tools for creation of new compounds by chemoenzymatic synthesis and synthetic biology. Over the last ten years, biochemical and structural investigations shed light on the mechanism and key residues that control the catalytic process, but to date crucial information on how certain prenyltransferases control regioselectivity and chemoselectivity is still lacking. Here, we advance a general understanding of the enzyme family by contributing the first structure of a tryptophan C5-prenyltransferase 5-DMATS. Additinally, the structure of a bacterial tryptophan C6-prenyltransferase 6-DMATS was solved. Analysis and comparison of both substrate-bound complexes led to the identification of key residues for catalysis. Next, site-directed mutagenesis was successfully implemented to not only modify the prenyl donor specificity but also to redirect the prenylation, thereby switching the regioselectivity of 6-DMATS to that of 5-DMATS. The general strategy of structure-guided protein engineering should be applicable to other related prenyltransferases, thus enabling the production of novel prenylated compounds.  相似文献   
949.
MARCH5 is a critical regulator of mitochondrial dynamics, apoptosis and mitophagy. However, its role in cardiovascular system remains poorly understood. This study aimed to investigate the role of MARCH5 in endothelial cell (ECs) injury and the involvement of the Akt/eNOS signalling pathway in this process. Rat models of myocardial infarction (MI) and human cardiac microvascular endothelial cells (HCMECs) exposed to hypoxia (1% O2) were used in this study. MARCH5 expression was significantly reduced in ECs of MI hearts and ECs exposed to hypoxia. Hypoxia inhibited the proliferation, migration and tube formation of ECs, and these effects were aggravated by knockdown of MARCH5 but antagonized by overexpressed MARCH5. Overexpression of MARCH5 increased nitric oxide (NO) content, p-eNOS and p-Akt, while MARCH5 knockdown exerted the opposite effects. The protective effects mediated by MARCH5 overexpression on ECs could be inhibited by eNOS inhibitor L-NAME and Akt inhibitor LY294002. In conclusion, these results indicated that MARCH5 acts as a protective factor in ischaemia/hypoxia-induced ECs injury partially through Akt/eNOS pathway.  相似文献   
950.
The Escherichia coli fabH gene encoding 3-ketoacyl-acyl carrier protein synthase III (KAS III) was isolated and the effect of overproduction of bacterial KAS III was compared in both E. coli and Brassica napus. The change in fatty acid profile of E. coli was essentially the same as that reported by Tsay et al. (J Biol Chem 267 (1992) 6807–6814), namely higher C14:0 and lower C18:1 levels. In our study, however, an arrest of cell growth was also observed. This and other evidence suggests that in E. coli the accumulation of C14:0 may not be a direct effect of the KAS III overexpression, but a general metabolic consequence of the arrest of cell division. Bacterial KAS III was expressed in a seed- and developmentally specific manner in B. napus in either cytoplasm or plastid. Significant increases in KAS III activities were observed in both these transformation groups, up to 3.7 times the endogenous KAS III activity in mature seeds. Only the expression of the plastid-targeted KAS III gene, however, affected the fatty acid profile of the storage lipids, such that decreased amounts of C18:1 and increased amounts of C18:2 and C18:3 were observed as compared to control plants. Such changes in fatty acid composition reflect changes in the regulation and control of fatty acid biosynthesis. We propose that fatty acid biosynthesis is not controlled by one rate-limiting enzyme, such as acetyl-CoA carboxylase, but rather is shared by a number of component enzymes of the fatty acid biosynthetic machinery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号