首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   671篇
  免费   32篇
  国内免费   12篇
  715篇
  2023年   3篇
  2022年   9篇
  2021年   15篇
  2020年   15篇
  2019年   15篇
  2018年   10篇
  2017年   5篇
  2016年   4篇
  2015年   24篇
  2014年   34篇
  2013年   19篇
  2012年   14篇
  2011年   19篇
  2010年   27篇
  2009年   31篇
  2008年   27篇
  2007年   27篇
  2006年   18篇
  2005年   35篇
  2004年   23篇
  2003年   21篇
  2002年   21篇
  2001年   9篇
  2000年   10篇
  1999年   16篇
  1998年   17篇
  1997年   20篇
  1996年   13篇
  1995年   9篇
  1994年   15篇
  1993年   13篇
  1992年   16篇
  1991年   16篇
  1990年   16篇
  1989年   13篇
  1988年   3篇
  1987年   9篇
  1986年   11篇
  1985年   9篇
  1984年   12篇
  1983年   8篇
  1982年   7篇
  1981年   7篇
  1980年   6篇
  1979年   15篇
  1978年   5篇
  1977年   4篇
  1975年   3篇
  1973年   5篇
  1970年   3篇
排序方式: 共有715条查询结果,搜索用时 0 毫秒
41.
Human retinal pigment epithelium (HRPE) cells are important in maintaining the normal physiology within the neurosensory retina and photoreceptors. Recently, transplantation of HRPE has become a possible therapeutic approach for retinal degeneration. By negative immunoselection (CD45 and glycophorin A), in this study, we have isolated and cultivated adult human bone marrow stem cells (BMSCs) with multilineage differentiation potential. After a 2- to 4-week culture under chondrogenic, osteogenic, adipogenic, and hepatogenic induction medium, these BMSCs were found to differentiate into cartilage, bone, adipocyte, and hepatocyte-like cells, respectively. We also showed that these BMSCs could differentiate into neural precursor cells (nestin-positive) and mature neurons (MAP-2 and Tuj1-positive) following treatment of neural selection and induction medium for 1 month. Furthermore, the plasticity of BMSCs was confirmed by initiating their differentiation into retinal cells and photoreceptor lineages by co-culturing with HRPE cells. The latter system provides an ex vivo expansion model of culturing photoreceptors for the treatment of retinal degeneration diseases.  相似文献   
42.
ABCA4 is a member of the ABCA subfamily of ATP binding cassette (ABC) transporters that is expressed in rod and cone photoreceptors of the vertebrate retina. ABCA4, also known as the Rim protein and ABCR, is a large 2273 amino acid glycoprotein organized as two tandem halves, each containing a single membrane spanning segment followed sequentially by a large exocytoplasmic domain, a multispanning membrane domain and a nucleotide binding domain. Over 500 mutations in the gene encoding ABCA4 are associated with a spectrum of related autosomal recessive retinal degenerative diseases including Stargardt macular degeneration, cone–rod dystrophy and a subset of retinitis pigmentosa. Biochemical studies on the purified ABCA4 together with analysis of abca4 knockout mice and patients with Stargardt disease have implicated ABCA4 as a retinylidene-phosphatidylethanolamine transporter that facilitates the removal of potentially reactive retinal derivatives from photoreceptors following photoexcitation. Knowledge of the genetic and molecular basis for ABCA4 related retinal degenerative diseases is being used to develop rationale therapeutic treatments for this set of disorders.  相似文献   
43.
Summary Fluorescent phallotoxins and heavy meromyosin were used to reveal the organization of the actin cytoskeleton in honeybee photoreceptor cells, and the relationship of actin filaments to the submicrovillar, palisade-like cisternae of the endoplasmic reticulum (ER). Bundles of unipolar actin filaments (pointed end towards the cell center) protrude from the microvillar bases and extend through cytoplasmic bridges that traverse the submicrovillar ER. Within the cytoplasmic bridges, the filaments are regularly spaced and tightly apposed to the ER membrane. In addition, actin filaments are deployed close to the microvillar bases to form a loose web. Actin filaments are scarce in cell areas remote from the rhabdom; these areas contain microtubule-associated ER domains. The results suggest that the actin system of the submicrovillar cytoplasm shapes the submicrovillar ER cisternae, and that the distinct ER domains interact with different cytoskeletal elements.  相似文献   
44.
R. A. Andersen 《Protoplasma》1985,128(2-3):94-106
Summary Flagellated vegetative cells of the colonial golden algaSynura uvella Ehr, were examined using serial sections. The two flagella are nearly parallel as they emerge from a flagellar pit near the apex of the cell. The photoreceptor is restricted to swellings on the flagella in the region where they pass through the apical pore in the scale case and the swellings are not associated with the cell membrane or an eyespot. A unique ring-like structure surrounds the axonemes of both flagella at a level just above the transitional helix. The basal bodies are interconnected by three striated, fibrous bands. Four short (<100 nm) microtubules lie between the basal bodies at their proximal ends. Two rhizoplasts extend down from the basal bodies and separate into numerous fine striated bands which lie over the nucleus. Three- and four-membered microtubular roots arise from the rhizoplasts and extend apically together. As the roots reach the cell anterior, the three-membered root bends and curves clockwise to form a large loop around the flagella; the four-membered root bends anticlockwise and terminates under the distal end of the three-membered root as it completes the loop. There are four absolute orientations, termed Types 1–4, in which the flagellar apparatus can occur. With each orientation type the positions of the Golgi body, nucleus, rhizoplasts, chloroplasts and microtubular roots change with respect to the flagella, basal bodies and photoreceptor. Two new basal bodies appear in pre-division cells, and three short microtubules appear in a dense substance adjacent to each new basal body. Based upon the positions of new pre-division basal bodies, a hypothesis is proposed to explain why there are four orientations and how they are maintained through successive cell divisions.  相似文献   
45.
Summary The photoreceptor microvilli of some nocturnal spiders (Isopeda andOlios in theSparassidae, andClubiona in theClubionidae) are wide (80–140 nm), and microvilli from adjacent receptors are interdigitated. Because microvillar diameters are relatively large in relation to the thicknesses of thin sections, it is possible to examine cytoskeletal structures closely associated with the microvillar plasmalemmae directly.Retinae were treated with a specific inhibitor of cysteine proteases before primary fixation for electron microscopy in a Ca2+-chelating medium. Cytoskeletal components were stabilized with tannic acid. A variety of microvillar profiles was obtained, consistent with an assumption that they represent imperfect preservation of anin vivo plasmalemmal undercoat, inferred to consist of longitudinally-disposed microfilaments, presumptively bonded to the microvillar plasmalemma. The microvillar lumen is inferred to be empty of cytoskeletal components in life.This model is discussed in terms of 1. the cytoskeletal organisation of microvilli of the primitive photoreceptors of a leech (Blest et al. 1983), where the arrangement of microfilaments resembles that in the vertebrate intestinal brush-border; 2. the large complement of membrane-associated oligomeric actin in rhabdoms of crayfish, where identifiable microfilaments cannot be resolved within microvilli by transmission electron microscopy (de Couet et al. 1984), and a single visualizable axial filament of uncertain composition is linked to the plasmalemma by side-arms.  相似文献   
46.
《Current biology : CB》2020,30(3):442-454.e7
  1. Download : Download high-res image (180KB)
  2. Download : Download full-size image
  相似文献   
47.
The carbon isotope composition of terrestrial C4 plants depends on the primary carboxylation of phosphoenolpyruvate (PEP) and on the diffusion of CO2 to the carboxylation sites, but is also influenced by the final carboxylation of ribulose-1,5-bisphosphate (RuBP). Several models have been used for reproducing this complex situation. In the present review, a particular model is applied as a means to interpret the effects of environmental and genetically determined factors on carbon isotope discrimination during C4 photosynthesis. As a new feature, the model considers four types of limitation of the overall CO2 assimilation rate. Both carboxylation reactions are assumed to be limited by either maximum enzyme activity or maximum substrate regeneration rate. The model is applied to experimental data on the effects of CO2, irradiance and water stress on short-term discrimination by leaves of several C4 species measured simultaneously with CO2 gas exchange characteristics. In particular, different patterns of the influence of low irradiances on carbon isotope discrimination are interpreted as due to variations in that irradiance at which a transition from limitation by PEP regeneration rate and RuBP carboxylase activity to limitation by the regeneration rates of both substrates occurs. After discussing literature data on the effects of environmental conditions on carbon isotope discrimination by C4 plants seasonal and developmental changes in carbon isotope composition, studies on the systematic and geographic distribution of C4 plants, evolutionary and genetical aspects, and some ecological implications are reviewed.  相似文献   
48.
Summary A monoclonal antibody against pea-leaf calmodulin was used to localise this calcium-binding protein on frozen sections of compound eyes of several arthropod species and on nitrocellulose replicas of electrophoretically separated peptides of isolated photoreceptor membrane from crayfish, fly, and squid. We report the presence of immunochemically detectable amounts of calmodulin specifically associated with the photoreceptor microvilli of rhabdomeral photoreceptors. A weak immunofluorescent signal was also observed in the cytoplasm of retinula cells. The presence of calmodulin in rhabdomeral microvilli is discussed in view of its possible implication in phototransduction and/or involvement in cytoskeletal structures associated with photoreceptor membranes in invertebrates.  相似文献   
49.
We investigated the role of the "sieve tube-companion cell complex" lining the tube periphery, particularly the microfilament and microtubule, in assisting the pushing of phloem sap flow. We made a simple phloem transport system with a living radish plant, in which the conducting channel was exposed for local treatment with chemicals that are effective in modulating protoplasmic movement (acetylcholine, (ACh) a neurotransmitter in animals and insects; cytochalasin B, (CB) a specific inhibitor of many cellular responses that are mediated by microfilament systems and amiprophos-methyl, (APM) a specific inhibitor of many cellular responses that are mediated by microtubule systems). Their effects on phloem transport were estimated by two experimental devices: (i) a comparison of changes in the amount of assimilates in terms of carbohydrates and ^14C-labeled photosynthetic production that is left in the leaf blade of treated plants; and (ii) distribution patterns of ^14C-labeled leaf assimilates in the phloem transport system. The results indicate that CB and APM markedly inhibited the transfer of photosynthetic product from leaf to root via the leaf vein, while ACh enhanced the transfer of photosynthetic product in low concentrations (5.0×10^-4 mol/L) but inhibited it in higher concentrations (2.0×10^-3 mol/L) from leaf to root via the leaf vein. Autoradiograph imaging clearly reveals that ACh treatment is more effective than the control, and both CB and APM treatments effectively inhibit the passage of radioactive assimilates. All of the results support the postulation that the peripheral protoplasm in the sieve tube serves not only as a passive semi-permeable membrane, but is also directly involved in phloem transport.  相似文献   
50.
The design, synthesis, and crystallization of an alpha-helical peptide   总被引:6,自引:0,他引:6  
Twelve- and sixteen-residue peptides have been designed to form tetrameric alpha-helical bundles. Both peptides are capable of folding into amphiphilic alpha-helices, with leucyl residues along one face and glutamyl and lysyl residues along the opposite face. Four such amphiphilic alpha-helices are capable of forming a noncovalently bonded tetramer. Neighboring helices run in antiparallel directions in the design, so that the complex has 222 symmetry. In the designed tetramer, the leucyl side chains interdigitate in the center in a hydrophobic interaction, and charged side chains are exposed to the solvent. The designed 12-mer (ALPHA-1) has been synthesized, and it forms helical aggregates in aqueous solution as judged by circular dichroic spectroscopy. It has also been crystallized and characterized by x-ray diffraction. The crystal symmetry is compatible with (but does not prove) the design. The design can be extended to a four-alpha-helical bundle formed from a single polypeptide by adding three peptide linkers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号