全文获取类型
收费全文 | 671篇 |
免费 | 32篇 |
国内免费 | 12篇 |
专业分类
715篇 |
出版年
2023年 | 3篇 |
2022年 | 9篇 |
2021年 | 15篇 |
2020年 | 15篇 |
2019年 | 15篇 |
2018年 | 10篇 |
2017年 | 5篇 |
2016年 | 4篇 |
2015年 | 24篇 |
2014年 | 34篇 |
2013年 | 19篇 |
2012年 | 14篇 |
2011年 | 19篇 |
2010年 | 27篇 |
2009年 | 31篇 |
2008年 | 27篇 |
2007年 | 27篇 |
2006年 | 18篇 |
2005年 | 35篇 |
2004年 | 23篇 |
2003年 | 21篇 |
2002年 | 21篇 |
2001年 | 9篇 |
2000年 | 10篇 |
1999年 | 16篇 |
1998年 | 17篇 |
1997年 | 20篇 |
1996年 | 13篇 |
1995年 | 9篇 |
1994年 | 15篇 |
1993年 | 13篇 |
1992年 | 16篇 |
1991年 | 16篇 |
1990年 | 16篇 |
1989年 | 13篇 |
1988年 | 3篇 |
1987年 | 9篇 |
1986年 | 11篇 |
1985年 | 9篇 |
1984年 | 12篇 |
1983年 | 8篇 |
1982年 | 7篇 |
1981年 | 7篇 |
1980年 | 6篇 |
1979年 | 15篇 |
1978年 | 5篇 |
1977年 | 4篇 |
1975年 | 3篇 |
1973年 | 5篇 |
1970年 | 3篇 |
排序方式: 共有715条查询结果,搜索用时 15 毫秒
11.
Roles for the N- and C-terminal domains of phytochrome B in interactions between phytochrome B and cryptochrome signaling cascades 总被引:1,自引:0,他引:1
Plants fine-tune light responses through interactions betweenphotoreceptors. We have previously reported that the greeningof Arabidopsis thaliana roots is regulated synergistically byphytochromes and cryptochromes. In the present study, we investigatedthe functions of the N- and C-terminal domains of phytochromeB (phyB) in the interactions between phyB and cryptochrome signalingcascades. Transgenic Arabidopsis expressing the phyB N-terminaldomain fused to green fluorescent protein (GFP), ß-glucuronidase(GUS) and the nuclear localization signal (NLS) showed intenseroot greening under blue light, indicating that the C-terminaldomain was dispensable for the synergistic interaction in theinduction of root greening. However, root greening under redlight was substantially reduced in the absence of the C-terminaldomain. This effect was opposite to the previous observationthat removal of the C-terminal domain enhanced the signalingactivity of phyB in the inhibition of hypocotyl elongation.In addition, we found that overexpression of the isolated C-terminaldomain of phyB enhanced the blue light response not only forroot greening but also for the inhibition of hypocotyl elongation.Analysis of this activity on various photoreceptor mutant backgroundsdemonstrated that the isolated C-terminal domain enhanced cryptochromesignaling. In summary, these results demonstrate that differentdomains of phyB can play various roles which are dependent onlight conditions as well as on the specific physiological response. 相似文献
12.
Katrin Anders Alexander Gutt Wolfgang G?rtner Lars-Oliver Essen 《The Journal of biological chemistry》2014,289(37):25590-25600
Phytochromes are photoreceptors using a bilin tetrapyrrole as chromophore, which switch in canonical phytochromes between red (Pr) and far red (Pfr) light-absorbing states. Cph2 from Synechocystis sp., a noncanonical phytochrome, harbors besides a cyanobacteriochrome domain a second photosensory module, a Pr/Pfr-interconverting GAF-GAF bidomain (SynCph2(1-2)). As in the canonical phytochromes, a unique motif of the second GAF domain, the tongue region, seals the bilin-binding site in the GAF1 domain from solvent access. Time-resolved spectroscopy of the SynCph2(1-2) module shows four intermediates during Pr → Pfr phototransformation and three intermediates during Pfr → Pr back-conversion. A mutation in the tongue''s conserved PRXSF motif, S385A, affects the formation of late intermediate R3 and of a Pfr-like state but not the back-conversion to Pr via a lumi-F-like state. In contrast, a mutation in the likewise conserved WXE motif, W389A, changes the photocycle at intermediate R2 and causes an alternative red light-adapted state. Here, back-conversion to Pr proceeds via intermediates differing from SynCph2(1-2). Replacement of this tryptophan that is ∼15 Å distant from the chromophore by another aromatic amino acid, W389F, restores native Pr → Pfr phototransformation. These results indicate large scale conformational changes within the tongue region of GAF2 during the final processes of phototransformation. We propose that in early intermediates only the chromophore and its nearest surroundings are altered, whereas late changes during R2 formation depend on the distant WXE motifs of the tongue region. Ser-385 within the PRXSF motif affects only late intermediate R3, when refolding of the tongue and docking to the GAF1 domain are almost completed. 相似文献
13.
Design of a functional calcium channel protein: inferences about an ion channel-forming motif derived from the primary structure of voltage-gated calcium channels. 下载免费PDF全文
A. Grove J. M. Tomich T. Iwamoto M. Montal 《Protein science : a publication of the Protein Society》1993,2(11):1918-1930
To identify sequence-specific motifs associated with the formation of an ionic pore, we systematically evaluated the channel-forming activity of synthetic peptides with sequence of predicted transmembrane segments of the voltage-gated calcium channel. The amino acid sequence of voltage-gated, dihydropyridine (DHP)-sensitive calcium channels suggests the presence in each of four homologous repeats (I-IV) of six segments (S1-S6) predicted to form membrane-spanning, alpha-helical structures. Only peptides representing amphipathic segments S2 or S3 form channels in lipid bilayers. To generate a functional calcium channel based on a four-helix bundle motif, four-helix bundle proteins representing IVS2 (T4CaIVS2) or IVS3 (T4CaIVS3) were synthesized. Both proteins form cation-selective channels, but with distinct characteristics: the single-channel conductance in 50 mM BaCl2 is 3 pS and 10 pS. For T4CaIVS3, the conductance saturates with increasing concentration of divalent cation. The dissociation constants for Ba2+, Ca2+, and Sr2+ are 13.6 mM, 17.7 mM, and 15.0 mM, respectively. The conductance of T4CaIVS2 does not saturate up to 150 mM salt. Whereas T4CaIVS3 is blocked by microM Ca2+ and Cd2+, T4CaIVS2 is not blocked by divalent cations. Only T4CaIVS3 is modulated by enantiomers of the DHP derivative BayK 8644, demonstrating sequence requirement for specific drug action. Thus, only T4CaIVS3 exhibits pore properties characteristic also of authentic calcium channels. The designed functional calcium channel may provide insights into fundamental mechanisms of ionic permeation and drug action, information that may in turn further our understanding of molecular determinants underlying authentic pore structures. 相似文献
14.
Fine structure of plasmodesmata in mature leaves of sugarcane 总被引:1,自引:0,他引:1
The fine structure of plasmodesmata in vascular bundles and contiguous tissues of mature leaf blades of sugarcane (Saccharum interspecific hybrid L62–96) was studied with the transmission electron microscope. Tissues were fixed in glutaraldehyde, with and without the addition of tannic acid, and postfixed in OsO4. The results indicate that the fine structure of plasmodesmata in sugarcane differs among various cell combinations in a cell-specific manner, but that three basic structural variations can be recognized among plasmodesmata in the mature leaf: 1) Plasmodesmata between mesophyll cells. These plasmodesmata possess amorphous, electron-opaque structures, termed sphincters, that extend from plasma membrane to desmotubule near the orifices of the plasmodesmata. The cytoplasmic sleeve is filled by the sphincters where they occur; elsewhere it is open and entirely free of particulate or spokelike components. The desmotubule is tightly constricted and has no lumen within the sphincters, but between the sphincters it is a convoluted tubule with an open lumen. 2) Plasmodesmata that traverse the walls of chlorenchymatous bundle-sheath cells and mestome-sheath cells. In addition to the presence of sphincters, these plasmodesmata are modified by the presence of suberin lamellae in the walls. Although the plasmodesmata are quite narrow and the lumens of the desmotubules are constricted where they traverse the suberin lamellae, the cytoplasmic sleeves are still discernible and appear to contain substructural components there. 3) Plasmodesmata between parenchymatous cells of the vascular bundles. These plasmodesmata strongly resemble those found in the roots of Azolla, in that their desmotubules are closed for their entire length and their cytoplasmic sleeves appear to contain substructural components for their entire length. The structural variations exhibited by the plasmodesmata of the sugarcane leaf are compared with those proposed for a widely-adopted model of plasmodesmatal structure.Abbreviation ER
endoplasmic reticulum
This study was supported by National Science Foundation grants DCB 87-01116 and DCB 90-01759 to R.F.E. and a University of Wisconsin-Madison Dean's Fellowship to K. R.-B. We also thank Claudia Lipke and Kandis Elliot for photographic and artistic assistance, respectively. 相似文献
15.
Susan Y. Schmidt 《Journal of neurochemistry》1983,40(6):1630-1638
Light stimulation of isolated rat retinas is shown to enhance the turnover of phosphatidylinositol (PI) as demonstrated by a light-dependent increase in [3H]inositol incorporation and concurrent hydrolysis of existing PI. Studies with rat retinas incubated with [3H]inositol and then microdissected at the level of the outer plexiform layer into photoreceptor cell and inner retina layers indicated that the light-enhanced incorporation of [3H]inositol was associated with the photoreceptor cell layer. The rate of PI hydrolysis in retinas prelabeled in vivo with [3H]inositol was higher in light than in dark incubations and was higher in the photoreceptor cell layer than within the inner retina. Within the photoreceptor cell layer, PI turnover involved 2%/min of the total PI contentin dark and 6–8%/min in light. In contrast to what has been reported for stimulus-enhanced turnover of PI in some tissues, this light-enhanced turnover of PI in the retina was not associated with detectable reductions in PI content. Parallel studies of sodium (22Na) uptake demonstrated that the photoreceptor cells remained functional during these incubations as they retained the capacity to restrict the entry of 22Na in light but not in dark. 相似文献
16.
Binding of the human immunodeficiency virus (HIV-1) envelope glycoprotein gp120 to the CCR5 co-receptor reduces constraints on the metastable transmembrane subunit gp41, thereby enabling gp41 refolding, fusion of viral and cellular membranes, and infection. We previously isolated adapted HIV-1JRCSF variants that more efficiently use mutant CCR5s, including CCR5(Δ18) lacking the important tyrosine sulfate-containing amino terminus. Effects of mutant CCR5 concentrations on HIV-1 infectivities were highly cooperative, implying that several may be required. However, because wild-type CCR5 efficiently mediates infections at trace concentrations that were difficult to measure accurately, analyses of its cooperativity were not feasible. New HIV-1JRCSF variants efficiently use CCR5(HHMH), a chimera containing murine extracellular loop 2. The adapted virus induces large syncytia in cells containing either wild-type or mutant CCR5s and has multiple gp120 mutations that occurred independently in CCR5(Δ18)-adapted virus. Accordingly, these variants interchangeably use CCR5(HHMH) or CCR5(Δ18). Additional analyses strongly support a novel energetic model for allosteric proteins, implying that the adaptive mutations reduce quaternary constraints holding gp41, thus lowering the activation energy barrier for membrane fusion without affecting bonds to specific CCR5 sites. In accordance with this mechanism, highly adapted HIV-1s require only one associated CCR5(HHMH), whereas poorly adapted viruses require several. However, because they are allosteric ensembles, complexes with additional co-receptors fuse more rapidly and efficiently than minimal ones. Similarly, wild-type HIV-1JRCSF is highly adapted to wild-type CCR5 and minimally requires one. The adaptive mutations cause resistances to diverse entry inhibitors and cluster appropriately in the gp120 trimer interface overlying gp41. We conclude that membrane fusion complexes are allosteric machines with an ensemble of compositions, and that HIV-1 adapts to entry limitations by gp120 mutations that reduce its allosteric hold on gp41. These results provide an important foundation for understanding the mechanisms that control membrane fusion and HIV-1's facile adaptability. 相似文献
17.
Structure and oligomerization of the PilC type IV pilus biogenesis protein from Thermus thermophilus
Type IV pili are expressed from a wide variety of Gram‐negative bacteria and play a major role in host cell adhesion and bacterial motility. PilC is one of at least a dozen different proteins that are implicated in Type IV pilus assembly in Thermus thermophilus and a member of a conserved family of integral inner membrane proteins which are components of the Type II secretion system (GspF) and the archeal flagellum. PilC/GspF family members contain repeats of a conserved helix‐rich domain of around 100 residues in length. Here, we describe the crystal structure of one of these domains, derived from the N‐terminal domain of Thermus thermophilus PilC. The N‐domain forms a dimer, adopting a six helix bundle structure with an up‐down‐up‐down‐up‐down topology. The monomers are related by a rotation of 170°, followed by a translation along the axis of the final α‐helix of approximately one helical turn. This means that the regions of contact on helices 5 and 6 in each monomer are overlapping, but different. Contact between the two monomers is mediated by a network of hydrophobic residues which are highly conserved in PilC homologs from other Gram‐negative bacteria. Site‐directed mutagenesis of residues at the dimer interface resulted in a change in oligomeric state of PilC from tetramers to dimers, providing evidence that this interface is also found in the intact membrane protein and suggesting that it is important to its function. Proteins 2010. © 2010 Wiley‐Liss, Inc. 相似文献
18.
19.
Introduction of a [4Fe-4S (S-cys)4]+1,+2 iron-sulfur center into a four-alpha helix protein using design parameters from the domain of the Fx cluster in the Photosystem I reaction center. 下载免费PDF全文
We describe the insertion of an iron-sulfur center into a designed four alpha-helix model protein. The model protein was re-engineered by introducing four cysteine ligands required for the coordination of the mulinucleate cluster into positions in the main-chain directly analogous to the domain predicted to ligand the interpeptide [4Fe-4S (S-cys)4] cluster, Fx, from PsaA and PsaB of the Photosystem I reaction center. This was achieved by inserting the sequence, CDGPGRGGTC, which is conserved in PsaA and PsaB, into interhelical loops 1 and 3 of the four alpha-helix model. The holoprotein was characterized spectroscopically after insertion of the iron-sulfur center in vitro. EPR spectra confirmed the cluster is a [4Fe-4S] type, indicating that the cysteine thiolate ligands were positioned as designed. The midpoint potential of the iron-sulfur center in the model holoprotein was determined via redox titration and shown to be -422 mV (pH 8.3, n = 1). The results support proposals advanced for the structure of the domain of the [4Fe-4S] Fx cluster in Photosystem I based upon sequence predictions and molecular modeling. We suggest that the lower potential of the Fx cluster is most likely due to factors in the protein environment of Fx rather than the identity of the residues proximal to the coordinating ligands. 相似文献
20.
Fan Y Soller M Flister S Hollmann M Müller M Bello B Egger B White K Schäfer MA Reichert H 《Developmental biology》2005,287(1):61-73
The correct targeting of photoreceptor neurons (R-cells) in the developing Drosophila visual system requires multiple guidance systems in the eye-brain complex as well as the precise organization of the target area. Here, we report that the egghead (egh) gene, encoding a glycosyltransferase, is required for a compartment boundary between lamina glia and lobula cortex, which is necessary for appropriate R1-R6 innervation of the lamina. In the absence of egh, R1-R6 axons form a disorganized lamina plexus and some R1-R6 axons project abnormally to the medulla instead of the lamina. Mosaic analysis demonstrates that this is not due to a loss of egh function in the eye or in the neurons and glia of the lamina. Rather, as indicated by clonal analysis and cell-specific genetic rescue experiments, egh is required in cells of the lobula complex primordium which transiently abuts the lamina and medulla in the developing larval brain. In the absence of egh, perturbation of sheath-like glial processes occurs at the boundary region delimiting lamina glia and lobula cortex, and inappropriate invasion of lobula cortex cells across this boundary region disrupts the pattern of lamina glia resulting in inappropriate R1-R6 innervation. This finding underscores the importance of the lamina/lobula compartment boundary in R1-R6 axon targeting. 相似文献