首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   3篇
  国内免费   3篇
  338篇
  2020年   2篇
  2019年   5篇
  2018年   2篇
  2017年   2篇
  2015年   11篇
  2014年   20篇
  2013年   10篇
  2012年   4篇
  2011年   4篇
  2010年   3篇
  2009年   14篇
  2008年   11篇
  2007年   12篇
  2006年   7篇
  2005年   14篇
  2004年   12篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  2000年   6篇
  1999年   7篇
  1998年   9篇
  1997年   13篇
  1996年   9篇
  1995年   6篇
  1994年   11篇
  1993年   9篇
  1992年   8篇
  1991年   10篇
  1990年   11篇
  1989年   6篇
  1988年   1篇
  1987年   5篇
  1986年   9篇
  1985年   7篇
  1984年   10篇
  1983年   4篇
  1982年   2篇
  1981年   6篇
  1980年   6篇
  1979年   14篇
  1978年   4篇
  1977年   4篇
  1976年   2篇
  1975年   1篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
排序方式: 共有338条查询结果,搜索用时 15 毫秒
41.
The ciliary rootlet is a large striated fibrous network originating from basal bodies in ciliated cells. To explore its postulated role in intracellular transport, we investigated the interaction between kinesin light chains (KLCs) and rootletin, the structural component of ciliary rootlets. We show here that KLCs directly interact with rootletin and are located along ciliary rootlets. Their interactions are mediated by the heptad repeats of KLCs. Further studies found that these interactions tethered kinesin heavy chains along ciliary rootlets. However, the ciliary rootlet-bound kinesin-1 did not recruit microtubules or move along ciliary rootlets. Additionally, amyloid precursor protein (APP; a kinesin-1 vesicular cargo receptor) and presenilin 1 (a presumed cargo of APP/kinesin-1) were found to be enriched along the rootletin fibers, suggesting that the interaction between ciliary rootlets and kinesin-1 recruits APP and presenilin 1 along ciliary rootlets. These findings indicate that ciliary rootlets may provide a scaffold for kinesin-1 vesicular cargos and, thus, play a role in the intracellular transport in ciliated cells.  相似文献   
42.
Nonmuscle myosin-II is a motor protein that drives cell movement and changes in cell shape during tissue and organ development. This study has determined the dynamic changes in myosin-II distribution during Drosophila compound eye morphogenesis. In photoreceptor neurons, myosin-II is undetectable at the apical domain throughout the first half of pupal life, at which time this membrane domain is involuted into the epithelium and progresses toward the retinal floor. Myosin-II is deployed at the apical surface at about 60% of pupal development, once the developing rhabdomeres reach the retinal floor. Subsequently, myosin-II becomes restricted to two stripes at the sides of the developing rhabdomere, adopting its final position within the visual cells R1-6; here, myosin-II is associated with a set of actin filaments that extend alongside the rhabdomeres. At the midpupal stage, myosin-II is also incorporated into stress-fiber-like arrays within the basal endfeet of the pigment cells that then change their shape. This spatiotemporal pattern of myosin-II localization and the morphological defects observed in the eyes of a myosin-II mutant suggest that the myosin-II/F-actin system is involved in the alignment of the rhabdomeres within the retina and in the flattening of the retinal floor. The observation that the myosin-II/F-actin arrays are incomplete or disorganized in R7/R8 and in rhodopsin-1-null R1-6 suggests further that the establishment and stability of this cytoskeletal system depend on rhodopsin-1 expression.  相似文献   
43.
Mammalian Müller glial cells are major glial cells in the retina. Here we report that these glial cells can be redirected towards a neuronal lineage by an aggregate-culture in vitro. Rat and macaque Müller glial cells did not express neuronal markers except after transfer to adhesive conditions. Furthermore, this expression could only take place in the presence of platelet-derived growth factor and valproic acid. We compared a normal monolayer-culture and an aggregate-culture, and rat Müller glial cells could only differentiate into neurons under non-adhesive conditions. However, Müller glial cells did not express the photoreceptor markers in vitro. After transplantation into the subretinal space, a retina-specific niche, rat Müller glial cells expressed the photoreceptor-specific marker, opsin (RET-P1). We demonstrate the potential of mammalian Müller glial cells as a source of photoreceptors, which may possibly contribute to the treatment of degenerative retinal diseases such as retinitis pigmentosa.  相似文献   
44.
G protein-coupled receptors (GPCRs) represent the largest family of transmembrane signaling proteins and are the target of approximately half of all therapeutic agents. Agonist ligands bind their cognate GPCRs stabilizing the active conformation that is competent to bind G proteins, thus initiating a cascade of intracellular signaling events leading to modification of the cell activity. Despite their biomedical importance, the only known GPCR crystal structures are those of inactive rhodopsin forms. In order to understand how GPCRs are able to transduce extracellular signals across the plasma membrane, it is critical to determine the structure of these receptors in their ligand-bound, active state. Here, we report a novel combination of purification procedures that allowed the crystallization of rhodopsin in two new crystal forms and can be applicable to the purification and crystallization of other membrane proteins. Importantly, these new crystals are stable upon photoactivation and the preliminary X-ray diffraction analysis of both photoactivated and ground state rhodopsin crystals are also reported.  相似文献   
45.
The development of stratified retinal cell architecture is highly conserved in all vertebrates, implying that a common fundamental molecular mechanism is involved in the generation of the organized retina. However, the detailed molecular mechanisms of retinal development are not fully understood. Here we have identified the Xenopus ortholog of prune and show that it is expressed in both differentiating and differentiated retinal domains during development. Interestingly, these spatial and temporal expression patterns coincide with the expression of prune binding partners, the NM23 family members. Overexpression of prune in retinal precursor cells significantly increases the ratio of Müller glial cells as observed by modulation of NM23 activity (Mochizuki et al., 2009). However, a mutated form of prune that has replacement of four aspartate (D) residues (D'Angelo et al., 2004), essential for phosphodiesterase activity, does not exhibit gliogenic activity. Our observations suggest that Xenopus prune may regulate Müller gliogenesis through phosphodiesterase-mediated regulation of NM23 family members.  相似文献   
46.
Abstract: Elevated concentrations of extracellular K+ increased inositol phosphate accumulation in primary cultures of chick retinal photoreceptors and multipolar neurons. K+-evoked stimulation of inositol phosphate accumulation was greater in photoreceptor-enriched cell cultures than in cultures where multipolar neurons were the predominant cell type. Destroying multipolar neurons, but not photoreceptors, with kainic acid and N -methyl- d -aspartate did not reduce the K+-evoked stimulation of inositol phosphate accumulation. Both of these observations indicate that the observed effects occur in photoreceptor cells. The K+-evoked stimulation of inositol phosphate accumulation was blocked by omitting Ca2+ from the incubation medium or by adding the dihydropyridine-sensitive Ca2+-channel antagonists, nitrendipine and nifedipine. Bay K 8644, a dihydropyridine agonist, stimulated inositol phosphate accumulation and enhanced the effect of K+. ω-Conotoxin GVIA, an inhibitor of N-type Ca2+ channels, had no significant effect on K+-stimulated inositol phosphate accumulation. Pretreatment with pertussis toxin neither blocked K+-evoked inositol phosphate accumulation nor altered the inhibitory effect of nifedipine. K+-evoked inositol phosphate accumulation appears to reflect activation of phosphatidylinositol-specific phospholipase C, as it is inhibited by U-73122. These results indicate that Ca2+ influx through voltage-gated, dihydropyridine-sensitive channels activates phospholipase C in photoreceptor inner segments and/or synaptic terminals.  相似文献   
47.
Summary The effect of phenylthiourea (PTU) on the pigment epithelium and the photoreceptor cells in the developing retina of Haplochromis burtoni was studied by electron microscopy. In the retinal pigment epithelium of 6-day old embryos, both types of melanin granule (spindle-shaped and rod-shaped) are already found. PTU inhibits the biosynthesis of melanin but does not influence the formation of premelanosomes so that in PTU-treated embryos there are no melanosomes, but an abundance of premelanosomes. The structure of the premelanosomes is described. It differs completely from that of all other vertebrates. Other changes: an increase in polysomes, retarded development of the inner segment of the photoreceptor cells and enlargement of the intercellular space between the inner and outer leaflet of the retina, may be due to a toxic effect of PTU.This investigation was supported by grants of the Deutsche Forschungsgemeinschaft  相似文献   
48.
Summary The Drosophila ninaC mutation produces small rhabdomeres with the axial filament of the microvillar cytoskeleton reduced or missing. Using post-embedding immunogold labelling of LR White-embedded eyes, we show that several alleles of this mutation retain positive anti-actin immunoreactivity in the rhabdomeres, comparable to that of wild-type flies.  相似文献   
49.
Immunohistochemical and physiological studies on various insect photoreceptors have demonstrated that the Na,K-ATPase (sodium pump) is restricted to the nonreceptive nonmicrovillar area of the plasma membrane. Here, we examined the distribution of the Na,K-ATPase in photoreceptor cells of the superposition-type compound eye in the moth Manduca sexta. Using immunofluorescent and immunogold cytochemistry, we show that the Na,K-ATPase is localized to both the nonmicrovillar and the microvillar parts of the plasma membrane. Manduca photoreceptors thus deviate from the common concept that the sodium pump and the molecular components of the photoreceptive machinery reside on different domains of the plasma membrane.  相似文献   
50.
Sorrentino M., Manni L., Lane N. J. and Burighel P. 2000. Evolution of cerebral vesicles and their sensory organs in an ascidian larva. —Acta Zoologica (Stockholm) 81 : 243–258 The ascidian larval nervous system consists of the brain (comprising the visceral ganglion and the sensory vesicle), and, continuous with it, a caudal nerve cord. In most species two organs, a statocyst and an ocellus with ciliary photoreceptors, are contained in the sensory vesicle. A third presumptive sensory organ was sometimes found in an ‘auxiliary’ ganglionic vesicle. The development and morphology of the sensory and auxiliary ganglionic vesicles in Botryllus schlosseri and their associated organs was studied. The sensory vesicle contains a unique organ, the photolith, responding to both gravity and light. It consists of a unicellular statocyst, in the form of an expanded pigment cup receiving six photoreceptor cell extensions. Presumptive mechano‐receptor cells (S1 cells), send ciliary and microvillar protrusions to contact the pigment cup. A second group of distinctive cells (S2), slightly dorsal to the S1 cells, have characteristic microvillar extensions, resembling photoreceptor. We concur with the idea that the photolith is new and derived from a primitive statocyst and the S2 cells are the remnant of a primitive ocellus. In the ganglionic vesicle some cells contain modified cilia and microvillar extensions, which resemble the photoreceptor endings of the photolith. Our results are discussed in the light of two possible scenarios regarding the evolution of the nervous system of protochordates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号