首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   0篇
  2019年   2篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   8篇
  2006年   5篇
  2005年   3篇
  2004年   1篇
排序方式: 共有35条查询结果,搜索用时 250 毫秒
11.
A novel ligand 2′-(2″-nitro-3″,4″-methylenedioxyphenyl)imidazo[4′,5′-f][1,10]-phenanthroline (NMIP) and its complex [Ru(phen)2(NMIP)]2+ have been synthesized and characterized by mass spectroscopy, 1H NMR and cyclic voltammetry. Binding of the complex with calf thymus DNA (CT DNA) has been investigated by spectroscopic methods, viscosity and electrophoresis measurements. The experimental results indicate that [Ru(phen)2(NMIP)]2+ binds to DNA via partial intercalative mode and the individual enantiomers of it bind to DNA in different rates. [Ru(phen)2(NMIP)]2+ has also been found to promote cleavage of plasmid pBR 322 DNA from the supercoiled Form I to the open circular Form II upon irradiation.  相似文献   
12.
A DNA-intercalating Ru(II) polypyridyl complex [Ru(bpy)2(appo)]2+ (bpy = 2,2′-bipyridine, appo = 11-aminopteridino[6,7-f][1,10]phenanthrolin-13(12H)-one) has been synthesized and characterized by elemental analysis, electrospray mass spectra, 1H NMR, UV/Vis spectrum, fluorescent spectrum and electrochemistry. The DNA-binding, photocleavage, and topoisomerase inhibition of the complex was studied. Interestingly, the complex binds to DNA via an intercalative mode with preference for GC sequences and cleaves the pBR322 DNA upon irradiation. In addition, the complex shows high inhibition activity against topoisomerase II by interfere the DNA religation.  相似文献   
13.
Zhao P  Xu LC  Huang JW  Zheng KC  Fu B  Yu HC  Ji LN 《Biophysical chemistry》2008,135(1-3):102-109
Four tricationic pyridium porphyrins appending hydroxyphenyl, methoxyphenyl, propionoxyphenyl or carboxyphenyl group at meso-20-position of porphyrin core have been synthesized and their abilities to bind and cleave DNA have been investigated. Using a combination of absorption, fluorescence, circular dichroism (CD) spectra, thermal DNA denaturation as well as viscosity measurements, their binding modes and intrinsic binding constants (Kb) to calf DNA (CT DNA) were comparatively studied and also compared with those of 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP). The results suggest that the Kb values of these porphyrins are greatly influenced by the number of positive charges and steric hindrance. Theoretical calculations applying the density functional theory (DFT) have been carried out and explain their DNA-binding properties reasonably. The efficiency of DNA photocleavage by these porphyrins shows high dependence on the values of Kb.  相似文献   
14.
Four new cationic porphyrins, compounds 1-4, with five to seven positive charges, were synthesized, characterized, and investigated for their binding properties towards calf-thymus DNA (CT-DNA). UV/VIS and fluorescence-titration data indicated strong binding, the apparent binding constants (K(app); (1.3-10)x10(-6) M) increasing with increasing number of charges, as determined by competitive fluorescence titration using ethidium bromide (EB) as molecular probe. These results were qualitatively confirmed by the observed photocleavage efficiency of the porphyrins towards plasmid pBR322 DNA.  相似文献   
15.
A new polypyridyl ligand MPPIP {MPPIP=2-(3'-phenoxyphenyl)imidazo[4,5-f]-[1,10]phenanthroline} and its ruthenium(II) complexes, [Ru(bpy)(2)MPPIP](2+) (1) (bpy=2,2'-bipyridine) and [Ru(phen)(2)MPPIP](2+) (2) (phen=1,10-phenanthroline) have been synthesized and characterized. The binding of the two complexes to calf thymus DNA (CT-DNA) has been investigated with spectrophotometric methods, viscosity measurements, as well as equilibrium dialysis and circular dichroism spectroscopy. The results suggest that both complexes bind to CT-DNA through intercalation, and enantioselectively interact with CT-DNA in a way. However, complex 2 is a much better candidate as an enantioselective binder to CT-DNA than complex 1. When irradiated at 365nm, both complexes have also been found to promote the photocleavage of plasmid pBR322 DNA.  相似文献   
16.
The ruthenium-nitrosyl complexes [RuII(trpy)(tmp)(NO+)](ClO4)3 ([4](ClO4)3) and [RuII(trpy)(tmp)(NO)](ClO4)2 ([5](ClO4)2) with {Ru-NO}6 and {Ru-NO}7 configurations, respectively (trpy = 2,2′:6′,2′′-terpyridine, tmp = 3,4,7,8-tetramethyl-1,10-phenanthroline) have been isotaled. The nitrosyl complexes [4]3+ and [5]2+ have been generated by following a stepwise synthetic procedure: [RuII(trpy)(tmp)(X)]n, X/n = Cl/+ (1+) → CH3CN/2+ (22+) → NO2/+ (3+) → NO+/3+ (43+) → NO/2+ (52+). The single-crystal X-ray structures of two precursor complexes [1]ClO4 and [3]ClO4 have been determined. The DFT optimized structures of 43+ and 52+ suggest that the Ru-N-O geometries in the complexes are linear (177.9°) and bent (141.4°), respectively. The nitrosyl complexes with linear (43+) and bent (52+) geometries exhibit ν(NO) frequencies at 1935 cm−1 (DFT: 1993 cm−1) and 1635 cm−1 (DFT: 1684 cm−1), respectively. Complex 43+ undergoes two successive reductions at 0.25 V (reversible) and −0.48 V (irreversible) versus SCE involving the redox active NO function, RuII-NO+ ? RuII-NO and RuII-NO → RuII-NO, respectively, besides the reductions of trpy and tmp at more negative potentials. The DFT calculations on the optimized 43+ suggest that LUMO and LUMO+1 are dominated by NO+ based orbitals of around 65% contribution along with partial metal contribution of ∼25% due to (dπ)RuII → π∗(NO+) back-bonding. The lowest energy transitions in 43+ and 52+ at 360 nm and 467 nm in CH3CN (TD-DFT: 364 and 459 nm) have been attributed to mixed MLLCT transitions of tmp(π) → NO+(π∗), Ru(dπ)/tmp(π) → NO+) and Ru(dπ)/NO(π) → trpy(π), respectively. The paramagnetic reduced species 52+ exhibits an anisotropic EPR spectrum with g1 = 2.018, g2 = 1.994, g3 = 1.880 (〈g〉 = 1.965 and Δg = 0.138) in CH3CN, along with 14N (I = 1) hyperfine coupling constant, A2 = 35 G at 110 K due to partial metal contribution in the singly occupied molecular orbital (DFT:SOMO:Ru (34%) and NO (53%)). Consequently, Mulliken spin distributions in 52+ are calculated as 0.115 for Ru and 0.855 for NO (N, 0.527; O, 0.328). The reaction of moderately electrophilic nitrosyl center in 43+ with the nucleophile, OH yields the nitro precursor, 3+ with the second-order rate constant value of 1.7 × 10−1 M−1 s−1 at 298 K in CH3CN-H2O (10:1). On exposure to light (Xenon 350 W lamp) both the nitrosyl species, 43+ ({RuII-NO+}) and 52+ ({RuII-NO}) undergo photolytic Ru-NO bond cleavage process but with a widely varying kNO, s−1 (t1/2, s) of 1.56 × 10−1(4.4) and 0.011 × 10−1(630), respectively.  相似文献   
17.
Oxovanadium(IV) complexes [VO(L)(B)] (1-3), where H2L is a Schiff base ligand 2-(2-hydroxybenzylideneamino)phenol and B is 1,10-phenanthroline (phen for 1), dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq for 2) or dipyrido[3,2-a:2′,3′-c]phenazine (dppz for 3), have been prepared, characterized and their DNA binding property and photo-induced DNA cleavage activity studied. Complex 3 which is structurally characterized by X-ray crystallography shows the presence of an oxovanadium(IV) moiety in a six coordinate VO3N3 coordination geometry. The complexes show a d-d band within 800-850 nm in DMF. The complexes display an oxidative response near 0.7 V versus SCE for V(V)-V(IV) and a reductive response within −1.1 to −1.3 V due to V(IV)-V(III) couple in DMF-0.1 M TBAP. The complexes are avid binders to calf thymus DNA giving binding constant values of 4.2 × 104 to 1.2 × 105 M−1. The complexes do not show any “chemical nuclease” activity in dark. The dpq and dppz complexes are photocleavers of plasmid DNA in UV-A light of 365 nm via 1O2 pathway and in near-IR light (752.5 to 799.3 nm IR optics) by HO pathway. Complex 3 exhibits significant photocytotoxicity in visible light in HeLa cells giving IC50 value of 13 μM, while it is less toxic in dark (IC50 = 97 μM).  相似文献   
18.
The complexes [(bpy)2Ru(dpp)]Cl2, [(phen)2Ru(dpp)]Cl2, and [(Ph2phen)2Ru(dpp)]Cl2 (where dpp = 2,3-bis(2-pyridyl)pyrazine, bpy = 2,2′-bipyridine, phen = 1,10-phenanthroline, Ph2phen = 4,7-diphenyl-1,10-phenanthroline) have been investigated and found to photocleave DNA via an oxygen-mediated pathway. These light absorbing complexes possess intense metal-to-ligand charge transfer (MLCT) transitions in the visible region of the spectrum. The [(TL)2Ru(dpp)]2+ systems populate 3MLCT states after visible light excitation, giving rise to emissions in aqueous solution centered at 692, 690, and 698 nm for TL = bpy, phen, and Ph2phen respectively. The 3MLCT states and emissions are quenched by O2, producing a reactive oxygen species. These complexes photocleave DNA with varying efficiencies, [(Ph2phen)2Ru(dpp)]2+ > [(phen)2Ru(dpp)]2+ > [(bpy)2Ru(dpp)]2+. The presence of the polyazine bridging ligand will allow these chromophores to be incorporated into larger supramolecular assemblies.  相似文献   
19.
In order to systematically perform an experimental and theoretical study on DNA binding and photocleavage properties of transition metal complexes of the type [M(L)2(L1)](PF6)n · xH2O (where M = Co(III) or Ni(II), L = 1,10-phenanthroline or 2.2′ bipryidine, L1 = Thiophene [2,3-b] quinoline (qt), n = 3 or 2 and x = 5 or 2) have been synthesized and characterized by elemental analysis, IR, 1H NMR, UV and magnetic susceptibility data. The DNA-binding properties of these complexes have been investigated with UV-Vis, viscosity measurements, thermal denaturation and cyclic voltametric studies. It is experimentally found that all the complexes are bound to DNA via intercalation in the order [Co(bpy)2(qt)](PF6)3 > [Co(phen)2(qt)](PF6)3 > [Ni(phen)2(qt)](PF6)2 > [Ni(bpy)2(qt)](PF6)2. The photocleavage studies with pUC19 DNA shows that all these complexes promoted the conversion of SC form to NC form in absence of ‘inhibitors’.  相似文献   
20.
New mixed polypyridyl {NMIP = 2′-(2″-nitro-3″,4″-methylenedioxyphenyl)imidazo-[4′,5′-f][1,10]-phenanthroline, dmb = 4,4′-dimethyl-2,2′-bipyridine, bpy = 2,2′-bipyridine} ruthenium(II) complexes [Ru(dmb)2(NMIP)]2+ (1) and [Ru(bpy)2(NMIP)]2+ (2) have been synthesized and characterized. The binding of these complexes to calf thymus DNA (CT-DNA) has been investigated with spectroscopic methods, viscosity and electrophoresis measurements. The experimental results indicate that both complexes could bind to DNA via partial intercalation from the minor/major groove. In addition, both complexes have been found to promote the single-stranded cleavage of plasmid pBR 322 DNA upon irradiation. Under comparable experimental conditions compared with [Ru(phen)2(NMIP)]2+, during the course of the dialysis at intervals of time, the CD signals of both complexes started from none, increased to the maximum magnitude, then no longer changed, and the activity of effective DNA cleavage dependence upon concentration degree lies in the following order: [Ru(phen)2NMIP]2+ > complex 2 > complex 1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号