首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
  2021年   1篇
  2020年   1篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
排序方式: 共有24条查询结果,搜索用时 0 毫秒
21.
Summary. Caged probes offer a novel approach to study plant cell-to-cell communication. Instead of introducing fluorescent molecules into cells by microinjection, their caged counterparts can be preloaded into the tissue by diffusion. Following spatially controlled photoactivation, movement of the uncaged fluorochrome can be followed in time and direction by confocal laser scanning microscopy. In the onion bulb scale epidermis used as a model system, symplasmic transport of the tracer out of a target cell was followed. Transport via the symplasmic pathway was challenged by plasmolysing the tissue. The experiments confirmed the symplasmic nature of tracer transport.Correspondence and reprints: Department of Plant Biology, Royal Veterinary and Agricultural University, Thorvaldsensvej 40, 1871 Frederiksberg C. Denmark. E-mail: hjm@kvl.dk  相似文献   
22.
Two novel photolabile nucleotide triphosphate (NTP) analogues were synthesized through Sonogashira coupling and their enzymatic incorporation into DNA was evaluated with three different DNA polymerases (Taq, Vent exo- and T4) by polymerase chain reaction. Both nucleotide triphosphate analogues were recognized by these DNA polymerases as substrates for primer extension. Light irradiation of PCR products removed the photolabile group and released the amino and carboxyl moieties. Further site-specific dual-labeling for oligodeoxynucleotides (ODNs) and random labeling for a long DNA construct with fluorophores were successfully achieved with incorporation of the photolabile amine modified deoxyuridine triphosphate (dUnTP).  相似文献   
23.
Carbon monoxide is now well-established as a small-molecule biological effector in the human body. Metal-carbonyl complexes are a promising way to achieve safe and controlled delivery of CO for therapeutic applications and thus, such CO releasing molecules (CORMs) have achieved significant attention in the last 10 years. In most CORMs, the liberation of carbon monoxide is triggered by hydrolytic processes in aqueous medium and thus their half-life under physiological conditions determines their potential therapeutic utility. To overcome such limitations, photo-induced CO release from dark-stable metal-carbonyl complex prodrugs is an interesting alternative. Thus, in this review, the current knowledge on PhotoCORMs is summarized and their properties critically evaluated. The main challenge for the future will be to achieve photolytic liberation of carbon monoxide by near-IR excitation in the phototherapeutic window of the cell. Different ways how this goal might be achieved are discussed.  相似文献   
24.
Taka-Aki Ono  Yorinao Inoue 《BBA》1983,723(2):191-201
The effects of divalent cations on photoactivation of the latent water-oxidation system in intact chloroplasts isolated from wheat (Triticum aestivum L.) leaves grown under intermittent flash illumination were investigated by using A23187, an ionophore for divalent cations, and the following results were obtained. (a) Photoactivation in the intact chloroplasts was inhibited by A23187, but was restored on addition of a low concentration of Mn2+ (10 μM). (b) A high concentration of Mn2+ (70 μM) was inhibitory, in contrast, for photoactivation, but the inhibition was restored by the coexistence of a suitable concentration of Ca2+ (5 mM). (c) The Ca2+-dependent restoration was inhibited by a high concentration of Mg2+ or Sr2+, but the inhibition was restored by the coexistence of Ca2+. (d) Kinetic analyses of these competitive effects between divalent cations revealed that: (i) High concentration of Ca2+ inhibits photoactivation in competition with Mn2+. (ii) High concentration of Mn2+ inhibits photoactivation in competition with Ca2+. (iii) High concentration of Mg2+ affects photoactivation by inhibiting Ca2+-dependent restoration in competition with Ca2+. Based on these results, we propose that the latent water-oxidation center has two binding sites, each specific for Mn2+ and Ca2+, and that photoactivation takes place in the center having both Mn2+ and Ca2+ on their respective binding sites.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号